Proof of Wheatstone bridge equation

Click For Summary
SUMMARY

The discussion centers on proving the Wheatstone bridge equation, specifically the expression for the change in voltage, ΔU. The equation is derived as ΔU = (R1R4 / (R1 + R4)²) * ((ΔR1 / R1) - (ΔR2 / R2) + (ΔR3 / R3) - (ΔR4 / R4)) * E. Participants explored the relationship between voltage and resistance changes, utilizing partial derivatives to express the overall change in voltage. The final equation reflects the correct signs and relationships among the resistances and their changes.

PREREQUISITES
  • Understanding of Wheatstone bridge principles
  • Familiarity with Ohm's Law (U = RI)
  • Knowledge of partial derivatives in calculus
  • Basic circuit analysis techniques
NEXT STEPS
  • Study the derivation of the Wheatstone bridge equation in detail
  • Learn about the application of partial derivatives in electrical engineering
  • Explore advanced circuit analysis techniques using voltage dividers
  • Investigate the effects of resistance changes on circuit behavior
USEFUL FOR

Students in electrical engineering, physics enthusiasts, and professionals involved in circuit design and analysis will benefit from this discussion.

whatdoido
Messages
48
Reaction score
2

Homework Statement



Prove the following equation:

## \Delta U=\frac {R_1R_4}{(R_1+R_4)^2}(\frac {\Delta R_1}{R_1}-\frac {\Delta R_2}{R_2}+\frac{\Delta R_3}{R_3}-\frac{\Delta R_4}{R_4})E##

This is used in Wheatstone bridge

whets.png


Homework Equations


[/B]
U=RI

The Attempt at a Solution


This has been a real head-scratcher

Two voltage dividers can be found for starters. Voltage's direction is assumed to be clockwise

##V_{in1}=I_2(R_2+R_3)##

##I_2=\frac{V_{in1}}{R_2+R_3}##

##V_{out1}=I_2R_3##

##V_{out1}=V_{in1}\frac{R_3}{R_2+R_3}##

Similarly:

##V_{out2}=V_{in1}\frac{R_4}{R_1+R_4}##

##V_G## is voltage between A and B

##V_{out1}-V_{out2}=V_G##

##V_{in1}\frac{R_3}{R_2+R_3}-V_{in1}\frac{R_4}{R_1+R_4}=V_G##

##V_{in1}(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})=V_G##

##V_{in1}=E##

##V_G=\Delta U## so then

##E(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})=\Delta U##

I have calculated voltages in different circuits and tried to think this problem in different ways, but the real problem is that how is ##\Delta R_i## inserted into equations. Assumption goes that it is added by ##R_i+\Delta R_i##. Maybe that is incorrect?

Help is very much appreciated!

edit: Misspelling corrected

Also particularizing that ##\Delta R_i## is a change in one resistance
 

Attachments

  • whets.png
    whets.png
    2.8 KB · Views: 3,828
Last edited:
Physics news on Phys.org
whatdoido said:
that ##\Delta R_i## is a change in one resistance
Which suggests that the Δ in ΔU refers to the consequent change in U, not to the potential difference between A and B at a given set of R values.
 
haruspex said:
Which suggests that the Δ in ΔU refers to the consequent change in U, not to the potential difference between A and B at a given set of R values.
Yes that is true, ##\Delta U## is zero before the change of resistances.
 
whatdoido said:
Yes that is true, ##\Delta U## is zero before the change of resistances.
So this equation:
##E(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})=\Delta U##
Should read
##E(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})=U##
and you need a different expression for ##\Delta U##.
 
Right now I'm trying to figure out why this would not be possible:

##E(\frac{R_3+\Delta R_3}{R_2+\Delta R_2+R_3+\Delta R_3}-\frac{R_4+\Delta R_4}{R_1+\Delta R_1+R_4+\Delta R_4})=\Delta U##

I can simplify it a bit, but is this the right way to go
 
whatdoido said:
Right now I'm trying to figure out why this would not be possible:

##E(\frac{R_3+\Delta R_3}{R_2+\Delta R_2+R_3+\Delta R_3}-\frac{R_4+\Delta R_4}{R_1+\Delta R_1+R_4+\Delta R_4})=\Delta U##

I can simplify it a bit, but is this the right way to go
I do not see how you get that. It looks wrong.
You have an equation for U (second eqn in post #4). Write out the corresponding eqn for U+ΔU.
 
haruspex said:
I do not see how you get that. It looks wrong.
You have an equation for U (second eqn in post #4). Write out the corresponding eqn for U+ΔU.
Now that I thought about it, simply adding the change does not make so much sense.

But then I got an idea to take partial derivates since it is about change. Adding those partial derivates together should give the overall change in voltage.

##U=E(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})##

Seems like marking ##U## as ##U_{BA}## is needed since I took potential difference with ##V_{out1}-V_{out2}=V_G##

##U_{BA}=(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})E##

This should be legal: ##\Delta U_{BA}=dU_{BA}##

Thus ##dU_{BA}=\frac {\partial} {\partial R_1}U_{BA}\Delta R_1+\frac {\partial} {\partial R_2}U_{BA}\Delta R_2+\frac {\partial} {\partial R_3}U_{BA}\Delta R_3+\frac {\partial} {\partial R_4}U_{BA}\Delta R_4##

Solving partial derivates each:

##\frac {\partial} {\partial R_1}U_{BA}\Delta R_1=\frac {\partial} {\partial R_1}(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})E\Delta R_1=-\frac {R_4}{(R_1+R_4)^2}E\Delta R_1##

##\frac {\partial} {\partial R_2}U_{BA}\Delta R_2=\frac {\partial} {\partial R_2}(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})E\Delta R_2=\frac{R_3}{(R_2+R_3)^2}E\Delta R_2##

##\frac {\partial} {\partial R_3}U_{BA}\Delta R_3=\frac {\partial} {\partial R_3}(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})E\Delta R_3=-\frac{R_2}{(R_2+R_3)^2}E\Delta R_3##

##\frac {\partial} {\partial R_4}U_{BA}\Delta R_4=\frac {\partial} {\partial R_4}(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})E\Delta R_4=\frac{R_1}{(R_1+R_4)^2}E\Delta R_4##

##dU_{BA}=-\frac {R_4}{(R_1+R_4)^2}E\Delta R_1+\frac{R_3}{(R_2+R_3)^2}E\Delta R_2-\frac{R_2}{(R_2+R_3)^2}E\Delta R_3+\frac{R_1}{(R_1+R_4)^2}E\Delta R_4##

##dU_{BA}=(-\frac{R_4}{R_1(1+\frac{R_4}{R_1})^2}\frac{\Delta R_1}{R_1}+\frac{R_3}{R_2(1+\frac{R_4}{R_1})^2}\frac{\Delta R_2}{R_2}-\frac{R_2}{R_3(1+\frac{R_1}{R_4})^2}\frac{\Delta R_3}{R_3}+\frac{R_1}{R_4(1+\frac{R_1}{R_4})^2}\frac{\Delta R_4}{R_4})E##

I just kept playing with the identity ##\frac{R_2}{R_3}=\frac{R_1}{R_4}## and I got:

##dU_{BA}=\frac{R_1R_4}{(R_1+R_4)^2}(-\frac{\Delta R_1}{R_1}+\frac{\Delta R_2}{R_2}-\frac{\Delta R_3}{R_3}+\frac{\Delta R_4}{R_4})E##

It has wrong signs because of ##V_{out1}-V_{out2}=V_G##

So I think the equation is about ##U_{AB}##

##\Delta U_{AB}=dU_{AB}=-dU_{BA}=-\frac{R_1R_4}{(R_1+R_4)^2}(-\frac{\Delta R_1}{R_1}+\frac{\Delta R_2}{R_2}-\frac{\Delta R_3}{R_3}+\frac{\Delta R_4}{R_4})E##

##=\frac{R_1R_4}{(R_1+R_4)^2}(\frac{\Delta R_1}{R_1}-\frac{\Delta R_2}{R_2}+\frac{\Delta R_3}{R_3}-\frac{\Delta R_4}{R_4})E##
 
Looks good.
 

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
3K
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
10
Views
4K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 34 ·
2
Replies
34
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K