Proof that canonical transformation implies symplectic condition

Click For Summary

Discussion Overview

The discussion centers on the relationship between canonical transformations and the symplectic condition in Hamiltonian mechanics. Participants explore the implications of Goldstein's Classical Mechanics regarding the existence of transformed Hamiltonians and the conditions under which these transformations are canonical.

Discussion Character

  • Technical explanation
  • Debate/contested

Main Points Raised

  • Some participants reference Goldstein's claim that a transformation is canonical if and only if the condition ##MJM^T= J## holds, where ##M## is the Jacobian of the transformation.
  • One participant expresses understanding of the proof that ##MJM^T= J## implies the existence of a transformed Hamiltonian ##K##, but notes the lack of proof for the converse.
  • Another participant argues that the proposition regarding the converse is incorrect, providing an example where the transformation does not satisfy the symplectic condition yet still results in a Hamiltonian system.
  • There is a discussion about the nature of Hamiltonian functions under canonical transformations, with some asserting that they remain unchanged, while others suggest additional terms may be involved.
  • A later post introduces a more general definition of canonical transformations in extended phase space, emphasizing the mathematical structure involved.
  • One participant shares a humorous anecdote about a mispronunciation related to Hamiltonian mechanics, indicating a lighter moment in the discussion.

Areas of Agreement / Disagreement

Participants express differing views on the validity of the converse proposition regarding canonical transformations and the symplectic condition. There is no consensus on the proof of the converse, and multiple interpretations of Hamiltonian transformations are presented.

Contextual Notes

Some claims rely on specific definitions and assumptions about Hamiltonian systems and transformations, which may not be universally accepted or fully resolved in the discussion.

Lagrange fanboy
Messages
9
Reaction score
2
TL;DR
Goldstein's classical mechanics shows the proof that if symplectic condition holds, then the transformation is canonical. The converse was claimed to be true, but I can't derive it.
Goldstein's Classical Mechanics makes the claim (pages 382 to 383) that given coordinates ##q,p##, Hamiltonian ##H##, and new coordinates ##Q(q,p),P(q,p)##, there exists a transformed Hamiltonian ##K## such that ##\dot Q_i = \frac{\partial K}{ \partial P_i}## and ##\dot P_i = -\frac{\partial K}{Q_i}## if and only if ##MJM^T= J## where ##M## is the Jacobian of ##Q,P## with respect to ##q,p## and ##J = \begin{bmatrix}
O&I\\\\
-I&O
\end{bmatrix}##. I understood the book's proof that ##MJM^T= J## implies the existence of such ##K##. However, the proof of the converse was not given and I do not know how to derive it myself.
 
  • Like
Likes   Reactions: PhDeezNutz
Physics news on Phys.org
A Hamiltonian function is not changed under the canonical transformation independent on time: K=H
 
  • Like
Likes   Reactions: topsquark
Lagrange fanboy said:
TL;DR Summary: Goldstein's classical mechanics shows the proof that if symplectic condition holds, then the transformation is canonical. The converse was claimed to be true, but I can't derive it.

Goldstein's Classical Mechanics makes the claim (pages 382 to 383) that given coordinates ##q,p##, Hamiltonian ##H##, and new coordinates ##Q(q,p),P(q,p)##, there exists a transformed Hamiltonian ##K## such that ##\dot Q_i = \frac{\partial K}{ \partial P_i}## and ##\dot P_i = -\frac{\partial K}{Q_i}## if and only if ##MJM^T= J## where ##M## is the Jacobian of ##Q,P## with respect to ##q,p## and ##J = \begin{bmatrix}
O&I\\\\
-I&O
\end{bmatrix}##. I understood the book's proof that ##MJM^T= J## implies the existence of such ##K##. However, the proof of the converse was not given and I do not know how to derive it myself.
This proposition is actually wrong. Indeed, the transformation P=p, Q=2q does not satisfy ##MJM^T= J##. But after this transformation a Hamiltonian system remains a Hamiltonian one with the new Hamiltonian K=2H.
The Hamiltonian formalism is a subtle enough mathematical topic to study it by physics textbooks
 
Last edited:
wrobel said:
A Hamiltonian function is not changed under the canonical transformation independent on time: K=H
No, usually you have an additional term. The most convenient way is to use a generating function, e.g., ##f(q,Q,t)##. Then the canonical transformation is given as
$$p=\partial_q f, \quad P=-\partial_Q f, \quad H'=H+\partial_t f.$$
 
Please read the post you are quoting :)
 
  • Like
Likes   Reactions: weirdoguy
By the way: Most general definition of a canonical transformation of an extended phase space is as follows.
A transformation
$$(t,x,p)\mapsto(T,X,P)$$ is said to be canonical if
$$dp_i\wedge dx^i-dH\wedge dt=dP_i\wedge dX^i-dK\wedge dT,$$ where
##H=H(t,x,p),\quad K=K(T,X,P).## Such transformations take a Hamiltonian system
$$\frac{dp}{dt}=-\frac{\partial H}{\partial x},\quad \frac{dx}{dt}=\frac{\partial H}{\partial p}$$
to a Hamiltonian one
$$\frac{dP}{dT}=-\frac{\partial K}{\partial X},\quad \frac{dX}{dT}=\frac{\partial K}{\partial P}.$$
But the most common type of canonical transformations is a special case of the above:
$$(t,x,p)\mapsto(T,X,P),\quad T=t.\qquad (*)$$
Introduce a notation
$$f=f(t,x,p),\quad \delta f=\frac{\partial f}{\partial x^i}dx^i+\frac{\partial f}{\partial p_i}dp_i.$$
Theorem. A transformation (*) is canonical iff ##\delta P_i\wedge\delta X^i=\delta p_i\wedge\delta x^i.##

Here we assume that independent variables are ##p,x,t## that is
$$P=P(t,x,p),\quad X=X(t,x,p)\qquad (**)$$ and correspondingly ##dx=\delta x,\quad dp=\delta p.##

If the transformation (**) is canonical and ##X=X(x,p),\quad P=P(x,p)## then
$$H(t,x,p)=K(t,X(x,p),P(x,p))$$
 
Last edited:
  • Like
Likes   Reactions: vanhees71
Excuse the Juvenile comment but the first time I heard my classical mechanics teacher say "Kamiltonian" I struggled to withhold my laughter. I couldn't believe he said it with a straight face.
 
PhDeezNutz said:
Excuse the Juvenile comment but the first time I heard my classical mechanics teacher say "Kamiltonian" I struggled to withhold my laughter. I couldn't believe he said it with a straight face.
In Russian, the letter H in the word Hamiltonian is pronounced as g in the word gone. Oh, I see for English speakers this Kamiltonian sounds somehow like camel
 
Last edited:
  • Haha
Likes   Reactions: vanhees71 and PhDeezNutz

Similar threads

  • · Replies 2 ·
Replies
2
Views
747
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K