I Proof that two linear forms kernels are equal

Portuga
Messages
56
Reaction score
6
TL;DR
Let ##F## and ##G## be non-zero linear forms in vector space ##V##, linearly dependent. Prove that ##\ker\left(F\right)=\ker\left(G\right)## and that its dimension is ##n-1## if ##\dim V=n##.
Attempt of a solution.
By the Rank–nullity theorem,
$$
\dim V=\dim Im_{F}+\dim\ker\left(F\right)
\Rightarrow n=1+\dim\ker\left(F\right)
\Rightarrow \dim\ker\left(F\right)=n-1.
$$
Similarly, it follows that $$\dim\ker\left(G\right)=n-1.$$

This first part, for obvious reasons, is very clear.
The next one offered me a terrible challenge.
I saw a solution, but it didn't convince me for sure.

Here it is.

As ##F## and ##G## are linearly dependent,
$$
\alpha F\left(u\right)+\beta G\left(u\right)=0
\Rightarrow G\left(u\right)=\frac{-\alpha}{\beta}F\left(u\right),
$$
since in this expression, ##\alpha## and ##\beta## have to be different from 0, because the two linear forms are non-zero. It follows that every vector in the image of ##F## is also a vector in the image of ##G##, which implies that ##Im_{F}=Im_{G}##. As for any subspace ##V##, ##V=\ker\left(F\right) \oplus Im_{F}##, where ##Im_{F}=Im_{G}##, then
$$
\ker\left(F\right)\oplus Im_{F}=\ker\left(G\right)\oplus Im_{G}
\Rightarrow \ker\left(F\right)\oplus Im_{F}=\ker\left(G\right)\oplus Im_{F}
\Rightarrow \ker\left(F\right)=\ker\left(G\right),
$$
as there is no intersection between the two sets.
I would like to know if this solution is correct and if is the best one, because it seems not elegant for me.
 
Last edited:
Physics news on Phys.org
You should type formulas as explained here:
https://www.physicsforums.com/help/latexhelp/

Your proof looks correct, from what I could read in this mess. The second part is definitely too long.
Since ##F## and ##G## are linear dependent, and non-zero, we immediately have ##F=\alpha \cdot G## for some scalar ##\alpha \neq 0.##

Now it is easy to see that ##\ker F \subseteq \ker G \subseteq \ker F## and that the images are equal, too: ##F(u)=\alpha \cdot G(u)=G(\alpha \cdot u).##
 
Thank you very much! Sorry for the mess in latex.
 
It will also be a good exercise for OP. Let ##f_1,\ldots, f_n,f:\mathbb{R}^m\to\mathbb{R}## be linear forms. Show that
$$\bigcap_{i=1}^n\ker f_i\subset \ker f\Leftrightarrow f=\lambda_1 f_1+\ldots+\lambda_n f_n$$
 
Last edited by a moderator:
  • Like
Likes Hall and Portuga
wrobel said:
It will also be a good exercise for OP. Let ##f_1,\ldots, f_n,f:\mathbb{R}^m\to\mathbb{R}## be linear forms. Show that
$$\bigcap_{i=1}^n\ker f_i\subset \ker f\Leftrightarrow f=\lambda_1 f_1+\ldots+\lambda_n f_n$$
Here is my attempt:

WLOG let us assume that ##f_i## s are independent.

##dim ~R^{m*}=m##

If ## m\leq n## then it becomes quite easier. Therefore, let's assume ## m \gt n## and ##n+r=m##. We can extend ##f_i s## to a basis of the dual space, let the basis be ##\{f_1, f_2, \cdots , f_n , f_{n+1}, \cdots , f_{n+r} \}##.

We're given that
$$
A = \bigcap_{i=1}^n ker (f_i) \subset ker (f)$$

As ##f## belongs to the dual space, we have
$$
f(v) = \lambda_1 f_1(v) +\cdots + \lambda_n f_n(v) + \lambda_{n+1} f_{n+1} (v) \cdots +\lambda_{n+r} f_{n+r} (v)$$

For any vector x belonging to A, we have
$$0= \lambda_{n+1} f_{n+1} (x) \cdots +\lambda_{n+r} f_{n+r} (x)$$

That's a contradiction, because that's the case for all the values of ## x\in \bigcap_{i=1}^n ker (f_i) ##.

Hence, ##f## must be a Linear combination of ##f_1, f_2, \cdots , f_n## only.

The converse is very easy to prove:

If ## f = \lambda_1 f_1 +\cdots + \lambda_n f_n##
Then, for all ## x \in A=\bigcap_{i=1}^n ker (f_i)## we would have
$$
f(x)=0$$
Hence, ## A \subset ker(f)##.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
906
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K