MHB Proofs about invertible linear functions

Click For Summary
The discussion focuses on proving properties of invertible linear functions and their continuity. It begins by establishing that if the norm of a linear transformation H is less than 1, the series of its powers converges, leading to a bound on the limit. It then shows that if a matrix A is close to the identity matrix, it is invertible, and its inverse can be expressed as a series involving the difference from the identity. The continuity of the inversion map at the identity is proven by demonstrating that as matrices approach the identity, their inverses also converge to the identity. Finally, the continuity of the inversion map at any invertible matrix A is established by showing that small perturbations in A lead to small perturbations in its inverse.
i_a_n
Messages
78
Reaction score
0
Let $G\subset L(\mathbb{R}^n;\mathbb{R}^n)$ be the subset of invertible linear transformations.

a) For $H\in L(\mathbb{R}^n;\mathbb{R}^n)$, prove that if $||H||<1$, then the partial sum $L_n=\sum_{k=0}^{n}H^k$ converges to a limit $L$ and $||L||\leq\frac{1}{1-||H||}$.

b) If $A\in L(\mathbb{R}^n;\mathbb{R}^n)$ satisfies $||A-I||<1$, then A is invertible and $A^{-1}=\sum_{k=0}^{\infty }H^k$ where $I-A=H$. (Hint: Show that $AL_n=H^{n+1}$)

c) Let $\varphi :G\rightarrow G$ be the inversion map $\varphi(A)=A^{-1}$. Prove that $\varphi$ is continuous at the identity I, using the previous two facts.

d) Let $A, C \in G$ and $B=A^{-1}$. We can write $C=A-K$ and $\varphi(A-K)=c^{-1}=A^{-1}(I-H)^{-1}$ where $H=BK$. Use this to prove that $\varphi$ is continuous at $A$.
I have little ideas about these questions. What's your answers? Thank you!
 
Last edited:
Physics news on Phys.org
a) Choose a submultiplicate norm so that
||AB|| $\leq$ ||A||||B||.
Now the sequence of partial sums $L_n$ converges to a limit L, then
$lim_{n \to \infty} ||L_n - L || = 0$,
Now $L_n = I + L + ... + L^{n}$. so $||L_n|| = ||I+...+H^n|| \leq ||I|| + ||H|| + ... + ||H^n|| \leq ||I|| + ||H|| + ||H||||H||+ ... + ||H||^n$ <-- by the submultiplicate norm.

so since ||H|| $< $ 1, then ||L_n - L|| $\leq 1 + ||H|| + ... + ||H||^n$, then assume $||H|| = p$, then this is just a geometric series, $1+|p|+...+|p|^n$, and this converges for $|p| < 1$, which is true. and $||L_n - L|| \leq 1 + |p| +...+|p|^n \leq \frac{1}{1-|p|}$ or $\frac{1}{1-||H||}$

b)if ||A-I|| < I
note that $(A-I)*(-I-A-A^2-...) = I $
Now we only need to show that $(-I-A-A^2...)$ converges.I have almost b,c done but i need to think about some details.
 
jakncoke said:
a) Choose a submultiplicate norm so that
||AB|| $\leq$ ||A||||B||.
Now the sequence of partial sums $L_n$ converges to a limit L, then
$lim_{n \to \infty} ||L_n - L || = 0$,
Now $L_n = I + L + ... + L^{n}$. so $||L_n|| = ||I+...+H^n|| \leq ||I|| + ||H|| + ... + ||H^n|| \leq ||I|| + ||H|| + ||H||||H||+ ... + ||H||^n$ <-- by the submultiplicate norm.

so since ||H|| $< $ 1, then ||L_n - L|| $\leq 1 + ||H|| + ... + ||H||^n$, then assume $||H|| = p$, then this is just a geometric series, $1+|p|+...+|p|^n$, and this converges for $|p| < 1$, which is true. and $||L_n - L|| \leq 1 + |p| +...+|p|^n \leq \frac{1}{1-|p|}$ or $\frac{1}{1-||H||}$

b)if ||A-I|| < I
note that $(A-I)*(-I-A-A^2-...) = I $
Now we only need to show that $(-I-A-A^2...)$ converges.I have almost b,c done but i need to think about some details.

Now I especially need proofs of c and d...I can prove a and b.

What $\varphi$ is continuous at I and A means? What is needed to prove?
 
You need to prove that as $A \to I$, then $\phi(A) \to \phi(I) = I$

or $||\phi(A) - I|| \to 0$ for any sequence of Matricies $A_n \to I$.
 
jakncoke said:
You need to prove that as $A \to I$, then $\phi(A) \to \phi(I) = I$

or $||\phi(A) - I|| \to 0$ for any sequence of Matricies $A_n \to I$.

Can you show me how to prove c) and d)? Thank you a lot!
 
You can see the truth of c) by this

So for any sequence $A_n \to I$, we can always pick a $N \in \mathbb{N}$ such that $\forall p \geq N$, $||A_p - I||< 1$

In b), we proved that $A_p$ has an inverse. $A_p^{-1]}$ or the form
$A_p^{-1} = \sum_{k=0}^{\infty} (I-A_p)^k$.

Expanding it out a bit $I + (I - A_p) + (I -A_p)^2...$ since $||\sum_{k=0}^{\infty} (I-A_p)^k|| \leq \sum_{k=0}^{\infty} ||(I-A_p)^k|| \leq \sum_{k=0}^{\infty} ||(I-A_p)||^k$

since i picked $p$ so that $||I-A_p|| < 1$, by a)

$||(I-A_p)^k|| \leq \sum_{k=0}^{\infty} ||(I-A_p)||^k$
Since this is esentially a geometric series which converges since $||I-A_p||<1$, it converges to $\frac{1}{1 - ||I-A_p||}$

Now $lim_{p \to \infty} A_p \to I,$ so $lim_{p \to \infty} \frac{1}{1 - ||I-A_p||} \to 1$
or $||\phi(A_p)|| \to 1$ as $p \to \infty$.

$||\phi(A_p) - 1 || \to 0$ as $p \to \infty$.

Thus $\phi(A)=A^{-1}$ is continuous at I.
 
jakncoke said:
You can see the truth of c) by this

So for any sequence $A_n \to I$, we can always pick a $N \in \mathbb{N}$ such that $\forall p \geq N$, $||A_p - I||< 1$

In b), we proved that $A_p$ has an inverse. $A_p^{-1]}$ or the form
$A_p^{-1} = \sum_{k=0}^{\infty} (I-A_p)^k$.

Expanding it out a bit $I + (I - A_p) + (I -A_p)^2...$ since $||\sum_{k=0}^{\infty} (I-A_p)^k|| \leq \sum_{k=0}^{\infty} ||(I-A_p)^k|| \leq \sum_{k=0}^{\infty} ||(I-A_p)||^k$

since i picked $p$ so that $||I-A_p|| < 1$, by a)

$||(I-A_p)^k|| \leq \sum_{k=0}^{\infty} ||(I-A_p)||^k$
Since this is esentially a geometric series which converges since $||I-A_p||<1$, it converges to $\frac{1}{1 - ||I-A_p||}$

Now $lim_{p \to \infty} A_p \to I,$ so $lim_{p \to \infty} \frac{1}{1 - ||I-A_p||} \to 1$
or $||\phi(A_p)|| \to 1$ as $p \to \infty$.

$||\phi(A_p) - 1 || \to 0$ as $p \to \infty$.

Thus $\phi(A)=A^{-1}$ is continuous at I.

But $\sum_{k=0}^{\infty }||I-A_p||^k\rightarrow\frac{1}{1-||I-A_p||}$ does not necessarily mean $||\sum_{k=0}^{\infty }(I-A_p)^k||\rightarrow\frac{1}{1-||I-A_p||}$

Do you mean $\frac{1}{1-||I-A_p||}\rightarrow1$ as $p\rightarrow\infty $ so $\sum_{k=0}^{\infty }||I-A_p||^k\rightarrow1$ so $||\sum_{k=0}^{\infty }(I-A_p)^k||\rightarrow 1$? But does $\sum_{k=0}^{\infty }||I-A_p||^k\rightarrow\frac{1}{1-||I-A_p||}$ mean $||\sum_{k=0}^{\infty }(I-A_p)^k||\rightarrow\frac{1}{1-||I-A_p||}$? I am not sure about this.
 
Last edited:
jakncoke said:
You can see the truth of c) by this

So for any sequence $A_n \to I$, we can always pick a $N \in \mathbb{N}$ such that $\forall p \geq N$, $||A_p - I||< 1$

In b), we proved that $A_p$ has an inverse. $A_p^{-1]}$ or the form
$A_p^{-1} = \sum_{k=0}^{\infty} (I-A_p)^k$.

Expanding it out a bit $I + (I - A_p) + (I -A_p)^2...$ since $||\sum_{k=0}^{\infty} (I-A_p)^k|| \leq \sum_{k=0}^{\infty} ||(I-A_p)^k|| \leq \sum_{k=0}^{\infty} ||(I-A_p)||^k$

since i picked $p$ so that $||I-A_p|| < 1$, by a)

$||(I-A_p)^k|| \leq \sum_{k=0}^{\infty} ||(I-A_p)||^k$
Since this is esentially a geometric series which converges since $||I-A_p||<1$, it converges to $\frac{1}{1 - ||I-A_p||}$

Now $lim_{p \to \infty} A_p \to I,$ so $lim_{p \to \infty} \frac{1}{1 - ||I-A_p||} \to 1$
or $||\phi(A_p)|| \to 1$ as $p \to \infty$.

$||\phi(A_p) - 1 || \to 0$ as $p \to \infty$.

Thus $\phi(A)=A^{-1}$ is continuous at I.

And what about d)? Thanks.
 
For d), use the very detailed hints that are provided. If $C$ is close to $A$, then $K$ is small and therefore so is $H$. Thus $I-H$ is close to $I$ and by c) so is $(I-H)^{-1}$, from which $C^{-1}$ is close to $A^{-1}$.

But the hint that says $C^{-1}=A^{-1}(I-H)^{-1}$ seems to be wrong. I think it should be $C^{-1}=(I-H)^{-1}A^{-1}.$
 

Similar threads

  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 26 ·
Replies
26
Views
757
  • · Replies 1 ·
Replies
1
Views
442
  • · Replies 23 ·
Replies
23
Views
1K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
950
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K