Proofs on growth rates of functions theorems using definition of a limit

Click For Summary
SUMMARY

This discussion focuses on proving theorems related to the growth rates of functions using the definition of limits, specifically in the context of Big Oh notation. The user seeks clarification on proving that if lim(x → ∞) f(x)/g(x) = 0, then f(x) = O(g(x)). The proof involves selecting an appropriate constant c and establishing a threshold N. Additionally, the discussion addresses the selection of epsilon values in proofs and explores the implications when the limit approaches infinity, concluding that g(x) = O(f(x)) in such cases.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with Big Oh notation
  • Basic knowledge of mathematical proofs
  • Experience with function growth rates
NEXT STEPS
  • Study the definition and properties of Big Oh notation
  • Learn how to construct mathematical proofs in calculus
  • Explore the implications of limits approaching infinity in function analysis
  • Examine examples of growth rate comparisons between functions
USEFUL FOR

Mathematicians, computer scientists, and students studying algorithms or complexity theory will benefit from this discussion, particularly those focused on understanding function growth rates and limits.

ATroelstein
Messages
15
Reaction score
0
Hello, I am working through some proofs from the following document: Function Definitions

Under Calculation of Big - Oh, some theorems are provided that classify the growth rates of functions in relation to one depending on what the limit is as the input approaches infinity. One proof is provided when the limit is a constant using the definition of a limit, but I'm trying to also prove the others ones, such as when the limit is 0. I came up with the following proof, skipping restating some of the definition that has already been provided in the example proof.

$$
\frac{f(x)}{g(x)} - 0 < \epsilon
$$

$$
\epsilon = 1
$$

$$
\frac{f(x)}{g(x)} - 0 < 1
$$$$
\frac{f(x)}{g(x)} < 1
$$$$
f(x) < 1 * g(x)
$$

Which shows 1 is the constant and N0 is the N that I need to then prove this is correct using the definition of Big Oh. My question is, does my proof flow correctly? Also, are you technically able to pick any positive value for epsilon, or is there a technique involved with selecting this value. Lastly, what would the proof look like if the limit was infinity? I'm confused when I set up the initial part of that proof as the f(x)/g(x) would be minus infinity. Thanks in advance for any guidance.
 
Physics news on Phys.org
To start, why don't you state the claim that you are trying to prove?
 
The claim I am trying to prove is that if:

$$
\lim_{x \rightarrow \infty} \frac{f(x)}{g(x)} = 0
$$

Then f(x) = O(g(x)) using the definition of a limit and then using the definition of Big Oh where the definition of Big Oh is:

f(x) = O(g(x)) if and only if there is a constant, c > 0, and an N >= 0, such that for all x > N, f(x) <= c*g(x)
 
I am assuming we are considering nonnegative functions.

OK, you are right that you can choose c = 1. I did not understand this:
ATroelstein said:
N0 is the N that I need to then prove this is correct using the definition of Big Oh.
I guess $N_0$ comes from the definition of the limit in the case of $\lim_{x \rightarrow \infty} \frac{f(x)}{g(x)} = 0$. Then I agree.

In general, unless you a computer, a proof should not be just a sequence of formulas. It should be a grammatically correct English text that includes phrases like "We must show that," "Suppose," "Therefore," "Set ε = 1," etc.

ATroelstein said:
Also, are you technically able to pick any positive value for epsilon, or is there a technique involved with selecting this value.
Technically, yes, when you have an assumption or a proved claim that starts with "For every ε > 0," you can instantiate ε with any positive number. My calculus teacher used to say, "Let's pick an arbitrarily small ε, for example, ε = 100." Which ε can help move the proof forward depends entirely on the problem.

ATroelstein said:
Lastly, what would the proof look like if the limit was infinity? I'm confused when I set up the initial part of that proof as the f(x)/g(x) would be minus infinity .
For example, if $\lim_{x \rightarrow \infty} \frac{f(x)}{g(x)} = \infty$, then $g(x)=O(f(x))$. Indeed, the assumption says that for every $M>0$ there exists an $N>0$ such that for all $x>N$ it is the case that $f(x)/g(x)>M$. Choose $M = 1$ and get the corresponding $N$; then $g(x)<f(x)/M=f(x)=1\cdot f(x)$ for all $x>N$.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K