MHB Prove a number is divisible by 2^{2008}

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The number \(1+\left\lfloor(\sqrt{17}+5)^{2008}\right\rfloor\) is shown to be divisible by \(2^{2008}\) through a recursive relationship involving the roots \(\alpha = 5 + \sqrt{17}\) and \(\beta = 5 - \sqrt{17}\). The sequence \(S_n = \alpha^n + \beta^n\) is established, which satisfies the recurrence relation \(S_{n+2} - 10S_{n+1} + 8S_n = 0\). An induction argument confirms that \(S_n\) is an integer and can be expressed as \(S_n = \lfloor\alpha^n\rfloor + 1\). Further, it is proven that \(S_n\) is a multiple of \(2^n\), leading to the conclusion that \(S_{2008}\) is a multiple of \(2^{2008}\). Thus, the original expression is indeed divisible by \(2^{2008}\).
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that the number $1+\left\lfloor{}\right(\sqrt{17}+5)^{2008} \rfloor$ is divisible by $2^{2008}$.
 
Mathematics news on Phys.org
we have
$(\sqrt{17}+5)^{2008}+ (5-\sqrt{17})^{2008}$
is integer and $(5-\sqrt{17}) $ is less than 1 so
given expression is

$(\sqrt{17}+5)^{2008}+ (5-\sqrt{17})^{2008}$

if we get x = $(5+\sqrt{17}) $
as $(5+\sqrt{17})(5-\sqrt{17}) = 8$

then given expression is
$(x)^{2008} + (\frac{8}{x})^{2008}$

we have $x + \frac{8}{x}=10$

we shall now show it by induction that
$x^{n} + (\frac{8}{x})^{n}$
is divisible by $2^{n}$

for n =1 it is true as it is 10

for n =2

it is $x^{2}+(\frac{8}{x})^2 =(x+(\frac{8}{x}))^2-2 * 8 = 10^2 - 16 = 84 $ divisible by 4

for n = 3

it is $x^{3}+(\frac{8}{x})^3 =(x+(\frac{8}{x}))^3-3 * 8 * (x + \frac{8}{x}) = 10^3- 3 *8 * 10 = 760 $ divisible by 8

so it is true for n = 1,2, 3

not we go for induction step
$(x^{n}+(\frac{8}{x})^n)(x+\frac{8}{x})= (x^{n+1} + (\frac{8}{x})^{n+1}) + 8(x^{n-1} + (\frac{8}{x})^{n-1}) $

hence
$x^{n+1}+(\frac{8}{x})^{n+1}= (x+\frac{8}{x})(x^{n} + (\frac{8}{x})^{n}) - 8(x^{n-1} + (\frac{8}{x})^{n-1}) $

or $x^{n+1}+(\frac{8}{x})^{n+1}= (x+\frac{8}{x})(x^{n} + (\frac{8}{x})^{n}) -2^3(x^{n-1} + (\frac{8}{x})^{n-1}) $

now if $x^{n}+(\frac{8}{x})^{n}$ is divsible by $2^n$

then it is easy to see that 1st term of RHS is disvisible by $2^{n+1}$ and 2nd by $2^{n+2}$ and hence LHS is divsible by $2^{n+1}$

so induction step is proved and hence given expression is divisible by $2^{2008}$
 
Last edited:
My solution is similar to kaliprasad's.

[sp]Let $\alpha = 5 + \sqrt{17}$, $\beta = 5 - \sqrt{17}$. Then $\alpha + \beta = 10$, $\alpha\beta = 8$, and so $\alpha$ and $\beta$ are the roots of the equation $x^2 - 10x + 8 = 0.$ Then $x^{n+2} - 10x^{n+1} + 8x^n = 0$ (for all $n\geqslant0$).

Let $S_n = \alpha^n + \beta^n$. Then $\alpha^{n+2} - 10\alpha^{n+1} + 8\alpha^n = 0$ and $\beta^{n+2} - 10\beta^{n+1} + 8\beta^n = 0$, so by addition $S_{n+2} - 10S_{n+1} + 8S_n = 0$. It follows by an easy induction argument that $S_n$ is an integer. Since $0<\beta^n < 1$ it then follows that $S_n = \lfloor\alpha^n \rfloor + 1.$

It remains to prove by induction that $S_n$ is a multiple of $2^n$, say $S_n = 2^nT_n$ for some integer $T_n$. Since $S_0 = 2$ and $S_1= 10$, this holds for $n=0$ and $n=1$. Assume that the result is true for $n$ and $n+1$. Then $S_{n+2} = 10S_{n+1} - 8S_n = 10(2^{n+1}T_{n+1}) - 8(2^nT_n) = 2^{n+2}(5T_{n+1} - 2T_n),$ which is a multiple of $2^{n+2}$ as required.[/sp]
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K