Prove a_0+a_1+…+a_2016>3^(2017)−1

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
Click For Summary
SUMMARY

The polynomial \( P(x) = x^{2017} + a_{2016}x^{2016} + a_{2015}x^{2015} + \ldots + a_1x + a_0 \) has 2017 real roots, while \( P(Q(x)) \), with \( Q(x) = \frac{1}{4}x^2 + x - 1 \), has no real roots. It is proven that \( a_0 + a_1 + \ldots + a_{2016} > 3^{2017} - 1 \) by analyzing the roots of \( P(x) \) and the range of \( Q(x) \). The minimum value of \( Q(x) \) is -2, indicating all roots \( \lambda_k < -2 \), leading to the conclusion that \( P(1) > 3^{2017} \).

PREREQUISITES
  • Understanding of polynomial functions and their roots
  • Familiarity with the concept of polynomial composition
  • Knowledge of quadratic functions and their properties
  • Basic principles of inequalities in mathematical proofs
NEXT STEPS
  • Study polynomial root behavior and the implications of real roots
  • Learn about polynomial composition and its effects on root existence
  • Explore the properties of quadratic functions, particularly their minimum values
  • Investigate advanced inequality techniques in polynomial analysis
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in polynomial inequalities and root analysis.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Suppose, that the polynomial $P(x) = x^{2017}+a_{2016}x^{2016}+ a_{2015}x^{2015}+ … + a_1x + a_0$ has $2017$ real roots,

while the polynomial $P(Q(x))$, where $Q(x) = \frac{1}{4}x^2+x-1$, has no real root.

Prove, that $a_0 + a_1 + … + a_{2016} > 3^{2017}-1.$
 
Mathematics news on Phys.org
lfdahl said:
Suppose, that the polynomial $P(x) = x^{2017}+a_{2016}x^{2016}+ a_{2015}x^{2015}+ … + a_1x + a_0$ has $2017$ real roots,

while the polynomial $P(Q(x))$, where $Q(x) = \frac{1}{4}x^2+x-1$, has no real root.

Prove, that $a_0 + a_1 + … + a_{2016} > 3^{2017}-1.$
[sp]If $\lambda_1,\,\lambda_2,\ldots,\lambda_{2017}$ are the real roots of $P(x)$ then $P(x) = (x - \lambda_1)(x - \lambda_2)\cdots (x - \lambda_{2017}).$

If there is a real number $x$ such that $Q(x) = \lambda_k$ for some $k$, then $x$ would be a real root of $P(Q(x))$. Therefore none of the roots $\lambda_k$ can be in the range of the polynomial $Q(x)$.

The minimum value of $Q(x)$ is $Q(-2) = -2$, so the range of $Q(x)$ is $[-2,\infty)$. Therefore $\lambda_k < -2$ for all $k$. It follows that $$\begin{aligned}P(1) &= (1 - \lambda_1)(1 - \lambda_2)\cdots (1 - \lambda_{2017}) \\ &> (1 - (-2))(1 - (-2))\cdots (1 - (-2)) = 3^{2017}.\end{aligned}$$ But $P(1) = 1+a_{2016} + a_{2015} + \ldots + a_1 + a_0$. Thus $a_0 + a_1 + \ldots + a_{2016} > 3^{2017}-1.$
[/sp]
 
Opalg said:
[sp]If $\lambda_1,\,\lambda_2,\ldots,\lambda_{2017}$ are the real roots of $P(x)$ then $P(x) = (x - \lambda_1)(x - \lambda_2)\cdots (x - \lambda_{2017}).$

If there is a real number $x$ such that $Q(x) = \lambda_k$ for some $k$, then $x$ would be a real root of $P(Q(x))$. Therefore none of the roots $\lambda_k$ can be in the range of the polynomial $Q(x)$.

The minimum value of $Q(x)$ is $Q(-2) = -2$, so the range of $Q(x)$ is $[-2,\infty)$. Therefore $\lambda_k < -2$ for all $k$. It follows that $$\begin{aligned}P(1) &= (1 - \lambda_1)(1 - \lambda_2)\cdots (1 - \lambda_{2017}) \\ &> (1 - (-2))(1 - (-2))\cdots (1 - (-2)) = 3^{2017}.\end{aligned}$$ But $P(1) = 1+a_{2016} + a_{2015} + \ldots + a_1 + a_0$. Thus $a_0 + a_1 + \ldots + a_{2016} > 3^{2017}-1.$
[/sp]

The ink has hardly dried, before you came up with this excellent solution, Opalg!
Thankyou very much for your participation!(Clapping)
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K