MHB Prove a_n=⌊2^n√2⌋ contains infinitely many composite numbers

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Composite Numbers
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove, that the sequence:

$a_n = \left\lfloor{2^n\sqrt{2}}\right\rfloor,\;\;\;\;n = 1,2,3,..$- contains infinitely many composite numbers.
 
Mathematics news on Phys.org
Suggested solution:
Suppose that the sequence ${a_n}$ contains only finitely many composite numbers, i.e. there exists an $N$ such that for all $n>N$, $a_n$ is odd.

Consider the binary representation of $a_n$ ($n>N$). The last digit of $a_n$ must be $1$, which in turn implies, that the fractional part of binary representation of $\sqrt{2}$ has all its digits equal to $1$ after the $N$´th position. This contradicts the irrationality of $\sqrt{2}$.
 
lfdahl said:
Suggested solution:
Suppose that the sequence ${a_n}$ contains only finitely many composite numbers, i.e. there exists an $N$ such that for all $n>N$, $a_n$ is odd.

Consider the binary representation of $a_n$ ($n>N$). The last digit of $a_n$ must be $1$, which in turn implies, that the fractional part of binary representation of $\sqrt{2}$ has all its digits equal to $1$ after the $N$´th position. This contradicts the irrationality of $\sqrt{2}$.

Hats off to you
 
kaliprasad said:
Hats off to you

The solution is not mine :o
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top