Prove by induction the sum of complex numbers is complex number

Click For Summary
The discussion focuses on proving by induction that the sum of complex numbers is also a complex number. The initial steps of the induction are acknowledged as correct, but there are concerns about notation and clarity. It is suggested to differentiate between the sum of n and n+1 by using distinct symbols, such as s_n and s_{n+1}. Additionally, it is recommended to explicitly state that the sum of two complex numbers remains a complex number to enhance clarity. Overall, the proof structure is solid, but improvements in notation and explanation are needed for better understanding.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Homework Statement
Prove by induction that for ##z## is a complex then ##\sum_{i=1}^{n}z_i##
Relevant Equations
##P(0)## is true.
If ##P(k)## is true, then ##P(k+1)## is true
See the work below:

I feel like it that I did it correctly. I feel like I skip a step in my induction. Please point any errors.
 

Attachments

  • Induction Help.jpg
    Induction Help.jpg
    28.2 KB · Views: 146
Physics news on Phys.org
cbarker1 said:
Homework Statement:: Prove by induction that for #z# is a complex then #\sum_{i=1}^{n}z_i#
Relevant Equations:: P(0) is true.
If P(k) is true, then P(k+1) is true

See the work below:

I feel like it that I did it correctly. I feel like I skip a step in my induction. Please point any errors.
Hint: Enclose your code in ##, not #.

The steps in your induction are correct. I must ask, though: You know that if y = 0 that z is still a complex number, right?

-Dan
 
  • Like
Likes Greg Bernhardt and cbarker1
topsquark said:
Hint: Enclose your code in ##, not #.

The steps in your induction are correct. I must ask, though: You know that if y = 0 that z is still a complex number, right?

-Dan
yes. I do.
 
The steps are all there, but your notation is bad. You are using ##z## for too many different things. You should distinguish between the sum of n versus the sum of n+1. Call the sum of n ##s_n## and the sum of n+1 ##s_{n+1}##.
Also, it would be a little more clear if, before the last line, you said that ##s_n + z_{n+1}## is the sum of two complex numbers so it is complex.
 
Last edited:
  • Like
Likes cbarker1 and topsquark
In general:

If $$a, b \in S \implies a + b \in S$$ then:$$a_1, \dots a_n \in S \implies \sum_{i=1}^{n}a_i \in S$$
 
  • Like
Likes cbarker1 and topsquark
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...