- #1

mynameisfunk

- 125

- 0

## Homework Statement

Suppose that {[tex]p_n[/tex]} is a Cauchy sequence and that there is a subsquence {[tex]p_{n_i}[/tex]} and a number [tex]p[/tex] such that [tex]p_{n_i} \rightarrow p[/tex]. Show that the full sequence converges, too; that is [tex]p_n \rightarrow p[/tex].

## Homework Equations

## The Attempt at a Solution

Take [tex]\varepsilon > 0[/tex]. take [tex]N[/tex] s.t. [tex]n_k,n > N[/tex] implies that [tex]d(p_{n_k},p)< \frac{\varepsilon}{2}, d(p_n,p_{n_k}) < \frac{\varepsilon}{2}[/tex]. Hence [tex]d(p_n,p) \leq d(p_{n_k},p)+d(p_{n_k},p_n) \leq \varepsilon[/tex] Thus {[tex]p_n[/tex]} converges to [tex]p[/tex].