MHB Prove: \(F(a,b)^*=F(a) \cup F(b)\)

  • Thread starter Thread starter Kiwi1
  • Start date Start date
  • Tags Tags
    Field
Click For Summary
The discussion centers around proving the relationship \(F(a,b)^*=F(a) \cup F(b)\) and clarifying the notation used, particularly the asterisk (*). Participants express confusion over whether the notation refers to the union or intersection of fields, with a consensus that it likely indicates a dual structure rather than just nonzero elements. The term \(F(a,b)^*\) is identified as the field of automorphisms of a larger field that preserves elements in \(F(a,b)\). Clarification is sought on the source material for the notation, with references made to a specific page in a book discussing Galois theory. Understanding the notation is deemed essential for solving the problem effectively.
Kiwi1
Messages
106
Reaction score
0
G. Shorter questions relating to automorphisms and Galois Groups

Let F be a field, and K a finite extension of F. Suppose \(a,b \in K\). Prove parts 1-3.

2. \(F(a,b)^*=F(a)^* \cap F(b)^*\)

Surely, they mean the union of F(a) and F(b) and not the intersection? There is no reason to think that \(b \in F(a)\) and therefore no reason to think \(b \in F(a)^* \cap F(b)^*\)?

Also what is the * about? Usualy I would expect \(F(a)^*=F(a)-\{0\}\) but I can see no reason to exclude the zero element. So has the author made typos or am I just confused?
 
Physics news on Phys.org
Kiwi said:
Also what is the * about?
That's the same question that I have. The * notation cannot refer to the nonzero elements. It seems to me that it must indicate some sort of dual structure. I suggest you look bach through whatever text these questions come from, to see where this notation is defined.
 
Could it mean the subset of elements that have an inverse?
 
You could have given us more information about the book you are reading. But on page 327 of that book, I read that $I^*=\mbox{Gal} (K:I)$ is the fixer of $I$. I have no idea what that means.
 
Thanks guys. F(a,b)* is the field of automorphisms of, a larger field containing F(a,b), that don't change each element in F(a,b). With that knowledge solving the problem is straightforward.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K