1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Prove forces derived from a velocity-dependent potential are not central

  1. May 15, 2016 #1
    I don't see why the last sentence in the attachment is true. It claims that if ##V_{ij}## or simply ##V## is also a function of the difference of velocities of particles ##i## and ##j##, then the force derived from ##V## is not central. In other words, if ##V=V(|r_i-r_j|, |v_i-v_j|)##, then (1.34) is not satisfied.

    Let ##p=|r_i-r_j|## and ##q=|v_i-v_j|## and ##\partial_x=\frac{\partial}{\partial x}##.

    ##\nabla_iV(p, q)=\partial_{x_i}V(p, q)\vec{e_x}+\partial_{y_i}V(p, q)\vec{e_y}+\partial_{z_i}V(p, q)\vec{e_z}##. Definition of ##\nabla_i## is given by the first sentence of the attachment.

    Since ##\partial_{x_i}V(p, q)=\partial_{x_i}V(p)##, the RHS above should be the same as the RHS of (1.34). Then, (1.34) will be satisfied.

    ##\partial_{x_i}V(p, q)=\partial_{x_i}V(p)## for the same reason as ##\partial_x(x+\dot{x}^2)=1=\partial_xx##.

    Screen Shot 2016-05-15 at 8.57.48 pm.png

    EDIT: I found the mistake. ##\partial_{x_i}V(p, q)\neq\partial_{x_i}V(p)## for the same reason as ##\partial_x(x+x\dot{x})\neq\partial_xx##.
     
    Last edited: May 15, 2016
  2. jcsd
  3. May 15, 2016 #2
    Nonetheless, I am still able to prove that the force derived from ##V=V(p, q)## satisfies (1.34), contrary to what is claimed by the book.

    Recall that ##p=|r_i-r_j|=\sqrt{(x_i-x_j)^2+(y_i-y_j)^2+(z_i-z_j)^2}## and ##q=|v_i-v_j|##.

    Thus, ##\frac{\partial p}{\partial x_i}=\frac{1}{2p}2(x_i-x_j)=\frac{1}{p}(x_i-x_j)##.

    Let ##V'(p, q)=\partial_{p}V(p, q)##.

    ##\nabla_iV(p, q)=\partial_{x_i}V(p, q)\vec{e_x}+\partial_{y_i}V(p, q)\vec{e_y}+\partial_{z_i}V(p, q)\vec{e_z}##

    ##=V'(p, q)\frac{\partial p}{\partial x_i}\vec{e_x}+V'(p, q)\frac{\partial p}{\partial y_i}\vec{e_y}+V'(p, q)\frac{\partial p}{\partial z_i}\vec{e_z}##

    ##=\frac{V'(p, q)}{p}(x_i-x_j)\vec{e_x}+\frac{V'(p, q)}{p}(y_i-y_j)\vec{e_y}+\frac{V'(p, q)}{p}(z_i-z_j)\vec{e_z}##

    ##=\frac{V'(p, q)}{p}(\vec{r_i}-\vec{r_j})##,

    which is equivalent to the RHS of (1.34).

    What's wrong?
     
    Last edited: May 15, 2016
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted