- #1
Apashanka
- 429
- 15
Just trying to derive the Navier-Stokes equation.
(1)The velocity at any point in space of an infinitesimal fluid element is v(x,y,z,t)
(2) acceleration ##\frac{dv}{dt}=\frac{\partial v}{\partial t}+\sum_i\frac{\partial v_i}{\partial x_i}{\dot x_i}##
##a=\frac{dv}{dt}=\frac{\partial v}{\partial t}+\sum_i\frac{\partial v_i}{\partial x_i}{v_i}=\frac{\partial v}{\partial t}+(v • \nabla)v=\frac{Dv}{Dt}##
On the Rhs
(1) g acceleration due to gravity.
(2) acceleration due to pressure gradient (due to normal force on the surface)=##-\frac{\nabla p}{\rho}##
Therefore ##\frac{Dv}{Dt}=g-\frac{\nabla p}{\rho}##+acceleration due to the tangential forces on the infinitesimal fluid element
Can anyone please help me out in how to calculate the acceleration due to tangential forces on the surface??
For the cubical infinitesimal volume element having edges dx,dy,dz
##F_x=\eta \frac{dv_x}{dz}|_{x,y}dxdy##
##F_y=\eta \frac{dv_y}{dz}|_{x,y}dx dy##
##F_z=\eta \frac{dv_z}{dy}|_{x,z}dx dz##
##a_x=\frac{\eta \frac{dv_x}{dz}|_{x,y}}{\rho dz}##
##a_y=\frac{\eta \frac{dv_y}{dz}|_{x,y}}{\rho dz}##
##a_z=\frac{\eta \frac{dv_z}{dy}|_{x,z}}{\rho dy}##
##\eta## is the coefficient of viscocity
Can anyone please help me in how to proceed further to put these terms in the RHS of the navier Stokes equation??
Here is a rough diagram
(1)The velocity at any point in space of an infinitesimal fluid element is v(x,y,z,t)
(2) acceleration ##\frac{dv}{dt}=\frac{\partial v}{\partial t}+\sum_i\frac{\partial v_i}{\partial x_i}{\dot x_i}##
##a=\frac{dv}{dt}=\frac{\partial v}{\partial t}+\sum_i\frac{\partial v_i}{\partial x_i}{v_i}=\frac{\partial v}{\partial t}+(v • \nabla)v=\frac{Dv}{Dt}##
On the Rhs
(1) g acceleration due to gravity.
(2) acceleration due to pressure gradient (due to normal force on the surface)=##-\frac{\nabla p}{\rho}##
Therefore ##\frac{Dv}{Dt}=g-\frac{\nabla p}{\rho}##+acceleration due to the tangential forces on the infinitesimal fluid element
Can anyone please help me out in how to calculate the acceleration due to tangential forces on the surface??
For the cubical infinitesimal volume element having edges dx,dy,dz
##F_x=\eta \frac{dv_x}{dz}|_{x,y}dxdy##
##F_y=\eta \frac{dv_y}{dz}|_{x,y}dx dy##
##F_z=\eta \frac{dv_z}{dy}|_{x,z}dx dz##
##a_x=\frac{\eta \frac{dv_x}{dz}|_{x,y}}{\rho dz}##
##a_y=\frac{\eta \frac{dv_y}{dz}|_{x,y}}{\rho dz}##
##a_z=\frac{\eta \frac{dv_z}{dy}|_{x,z}}{\rho dy}##
##\eta## is the coefficient of viscocity
Can anyone please help me in how to proceed further to put these terms in the RHS of the navier Stokes equation??
Here is a rough diagram
Last edited: