Prove Inequality: $f(x)$ Continuous Positive $\int_{0}^{1}$

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
SUMMARY

The forum discussion centers on proving the inequality $$\int_{0}^{1}\frac{f(x)}{f(x+\frac{1}{2})} \,dx \geq 1$$ for a positive and continuous function $f$ defined on the real line, which satisfies the periodic condition $f(x + 1) = f(x)$. Participants, including Olinguito and lfdahl, contributed insights and alternative solutions, emphasizing the symmetry in the problem. The discussion highlights the importance of understanding the properties of continuous functions and their implications in integral inequalities.

PREREQUISITES
  • Understanding of continuous functions and their properties
  • Familiarity with integral calculus and inequalities
  • Knowledge of periodic functions and their characteristics
  • Experience with mathematical proofs and logical reasoning
NEXT STEPS
  • Study the properties of periodic functions in depth
  • Explore advanced techniques in integral inequalities
  • Learn about the application of symmetry in mathematical proofs
  • Investigate alternative methods for proving inequalities in calculus
USEFUL FOR

Mathematicians, students studying real analysis, and anyone interested in advanced calculus and integral inequalities will benefit from this discussion.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $f$ be a positive and continuous function on the real line which satisfies $f(x + 1) = f(x)$ for all numbers $x$.

Prove the inequality:

$$\int_{0}^{1}\frac{f(x)}{f(x+\frac{1}{2})} \,dx \geq 1.$$
 
Physics news on Phys.org
By the Cauchy–Schwartz inequality for integrals,
$$\left(\int_0^1f(x)dx\right)^2\ \le\ \left(\int_0^1\frac{f(x)}{f\left(x+\frac12\right)}dx\right)^2\left(\int_0^1f\left(x+\frac12\right)dx\right)^2.$$
But $f(x)$ has period $1$ and so $\displaystyle\int_0^1f\left(x+\frac12\right)dx=\int_0^1f(x)dx$. The result follows.
 
Thankyou, Olinguito, for your participation and correct answer. Clever done!

An alternative solution:

\[\int_{0}^{1}\frac{f(x)}{f(x+\frac{1}{2})}dx = \int_{0}^{\frac{1}{2}}\frac{f(x)}{f(x+\frac{1}{2})}dx + \int_{\frac{1}{2}}^{1}\frac{f(x)}{f(x+\frac{1}{2})}dx \\ = \int_{0}^{\frac{1}{2}}\frac{f(x)}{f(x+\frac{1}{2})}dx+\int_{0}^{\frac{1}{2}}\frac{f(x+\frac{1}{2})}{f(x+1)}dx \\= \int_{0}^{\frac{1}{2}}\frac{f(x)}{f(x+\frac{1}{2})}dx+\int_{0}^{\frac{1}{2}}\frac{f(x+\frac{1}{2})}{f(x)}dx \\= \int_{0}^{\frac{1}{2}}\left ( \frac{f(x)}{f(x+\frac{1}{2})}+\frac{f(x+\frac{1}{2})}{f(x)} \right )dx \\
\geq \int_{0}^{\frac{1}{2}} 2\sqrt{\frac{f(x)}{f(x+\frac{1}{2})}\cdot \frac{f(x+\frac{1}{2})}{f(x)} }dx \\=2\int_{0}^{\frac{1}{2}}dx = 1.\]
 
lfdahl said:
...
[sp]Beautiful solution! I observed this symmetry but didn't reach the step where you achieve the inequality.[/sp]
 
June29 said:
[sp]Beautiful solution! I observed this symmetry but didn't reach the step where you achieve the inequality.[/sp]
I believe lfdahl is using the fact that for any real, non-negative $X,Y$,
$$X+Y\ \ge\ 2\sqrt{XY}.$$
This comes from the AM–GM inequality, or alternatively from $\left(\sqrt X-\sqrt Y\right)^2\ge0$.
 
Olinguito said:
I believe lfdahl is using the fact that for any real, non-negative $X,Y$,
$$X+Y\ \ge\ 2\sqrt{XY}.$$
This comes from the AM–GM inequality, or alternatively from $\left(\sqrt X-\sqrt Y\right)^2\ge0$.
[sp]I know. I was talking about my own attempt to solve the problem prior to seeing lfdahl's solution.[/sp]
 
June29 said:
[sp]I know. I was talking about my own attempt to solve the problem prior to seeing lfdahl's solution.[/sp]

Please note: The alternative solution is from a 3rd party and not mine. Maybe, I should have pointed this out from the start. I´m sorry for the confusion.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K