- 8,130
- 574
Let ##f(x)## be an integrable function defined on ##[0,1]## with the following property: ##a=inf(f(x))\lt f(x) \lt b=sup(f(x))##. Prove ##a\lt \int_0^1f(x)dx \lt b##. It is obviously true, but how does one prove it?
Mean value theorem for integration: https://en.wikipedia.org/wiki/Mean_value_theorem#Mean_value_theorems_for_integrationmathman said:Let ##f(x)## be an integrable function defined on ##[0,1]## with the following property: ##a=inf(f(x))\lt f(x) \lt b=sup(f(x))##. Prove ##a\lt \int_0^1f(x)dx \lt b##. It is obviously true, but how does one prove it?