MHB Prove Log Gamma Integral: $\sqrt{2 \pi}$

AI Thread Summary
The integral of the logarithm of the Gamma function over the interval from 0 to 1 is shown to equal the logarithm of the square root of 2π. The proof utilizes the classical Riemann sum approach and the reflection formula for the Gamma function. By partitioning the interval and applying trigonometric identities, the integral simplifies to a form that reveals the desired result. An alternative method is also presented, confirming the same conclusion through a different series of transformations. Ultimately, both methods lead to the established equality of the integral with ln(√2π).
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the following

$$\int^1_0 \ln\left( \Gamma (x) \right) \, dx = \ln \left( \sqrt{2 \pi } \right) $$
 
Mathematics news on Phys.org
An elementary evaluation of the integral...

$\displaystyle I = \int_{0}^{1} \ln \Gamma(x)\ dx\ (1)$

... uses the 'classical' Riemann sum. Let's partition the interval [0,1] into n subintervals of length $\frac{1}{n}$ so that is...

$\displaystyle I = \lim_{n \rightarrow \infty} \frac{1}{n}\ \sum_{k=1}^{n} \ln \Gamma(\frac{k}{n})\ (2)$

If n is even we can write...

$\displaystyle \frac{1}{n}\ \sum_{k=1}^{n} \ln \Gamma(\frac{k}{n}) = \frac{1}{n}\ \ln \prod_{k=1}^{n} \Gamma(\frac{k}{n}) = \frac{1}{n}\ \ln \prod_{k=1}^{\frac{n}{2}} \{\Gamma(\frac{k}{n})\ \Gamma (1- \frac{k}{n}) \}\ (3) $

Now we use the 'reflection formula'...

$\displaystyle \Gamma (x)\ \Gamma (1-x) = \frac{\pi}{\sin \pi x}\ (4)$

... to arrive to write...

$\displaystyle \frac{1}{n}\ \sum_{k=1}^{n} \ln \Gamma(\frac{k}{n}) = \frac{1}{n}\ \ln \prod_{k=1}^{\frac{n}{2}} \frac{\pi}{\sin \pi \frac{k}{n}} = \ln \sqrt{\pi} - \ln (\prod_{k=1}^{\frac{n}{2}} \sin \pi \frac {k}{n})^{\frac{1}{n}}\ (5)$

As last step we recall the trigonometric identity...

$\displaystyle \prod_{k=1}^{n} \sin \pi \frac{k}{n} = \frac{n+1}{2^{n}}\ (6)$

... we arrive to write...

$\displaystyle \frac{1}{n}\ \sum_{k=1}^{n} \ln \Gamma(\frac{k}{n}) = \ln \sqrt{\pi} - \frac{1}{n}\ \ln (n+1) + \ln \sqrt{2}\ (7)$

... and now we push n to infinity obtaining...

$\displaystyle I = \int_{0}^{1} \ln \Gamma(x)\ dx = \ln \sqrt{2\ \pi}\ (8)$

Kind regards

$\chi$ $\sigma$
 
I used a slightly different way

$$

\begin{align*}

\int^1_0 \ln (\Gamma(t)) \, dt

&= \int^1_0 \ln (\Gamma(1-t)) \, dt \\

&= \int^1_0 \ln \left( \frac{\pi } { \Gamma(t) \sin( \pi t)} \right) \, dt \\

&= \int^1_0 \ln \left( \pi \right) \, dt - \int^1_0 \ln( \Gamma(t)) \, dt -\int^1_0 \sin( \pi t) \, dt \\

&= \ln ( \pi ) - \int^1_0 \ln( \Gamma(t)) \, dt + \ln(2) \\

&= \ln (2 \pi ) - \int^1_0 \ln( \Gamma(t)) \, dt \\

&= \ln ( \sqrt{2 \pi} )

\end{align*}

$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
11
Views
2K
Replies
6
Views
1K
Replies
3
Views
2K
Replies
13
Views
2K
Replies
3
Views
2K
Replies
1
Views
924
Back
Top