Prove Log Gamma Integral: $\sqrt{2 \pi}$

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Gamma Integral Log
Click For Summary
SUMMARY

The integral of the logarithm of the Gamma function over the interval [0,1] is proven to equal the logarithm of the square root of 2π. Specifically, the evaluation of the integral $$I = \int_{0}^{1} \ln \Gamma(x)\ dx$$ leads to the conclusion that $$I = \ln \sqrt{2 \pi}$$. The proof utilizes the classical Riemann sum approach and the reflection formula for the Gamma function, culminating in the identity $$\prod_{k=1}^{n} \sin \pi \frac{k}{n} = \frac{n+1}{2^{n}}$$ to derive the final result.

PREREQUISITES
  • Understanding of the Gamma function and its properties
  • Familiarity with Riemann sums and their applications in calculus
  • Knowledge of trigonometric identities, particularly involving sine functions
  • Basic proficiency in mathematical proofs and manipulations
NEXT STEPS
  • Study the properties of the Gamma function, including the reflection formula
  • Learn about Riemann sums and their convergence in integral calculus
  • Explore advanced trigonometric identities and their applications in integrals
  • Investigate other integrals involving the Gamma function and their implications in probability theory
USEFUL FOR

Mathematicians, students of advanced calculus, and researchers in mathematical analysis who are interested in integral evaluations and properties of special functions.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the following

$$\int^1_0 \ln\left( \Gamma (x) \right) \, dx = \ln \left( \sqrt{2 \pi } \right) $$
 
Physics news on Phys.org
An elementary evaluation of the integral...

$\displaystyle I = \int_{0}^{1} \ln \Gamma(x)\ dx\ (1)$

... uses the 'classical' Riemann sum. Let's partition the interval [0,1] into n subintervals of length $\frac{1}{n}$ so that is...

$\displaystyle I = \lim_{n \rightarrow \infty} \frac{1}{n}\ \sum_{k=1}^{n} \ln \Gamma(\frac{k}{n})\ (2)$

If n is even we can write...

$\displaystyle \frac{1}{n}\ \sum_{k=1}^{n} \ln \Gamma(\frac{k}{n}) = \frac{1}{n}\ \ln \prod_{k=1}^{n} \Gamma(\frac{k}{n}) = \frac{1}{n}\ \ln \prod_{k=1}^{\frac{n}{2}} \{\Gamma(\frac{k}{n})\ \Gamma (1- \frac{k}{n}) \}\ (3) $

Now we use the 'reflection formula'...

$\displaystyle \Gamma (x)\ \Gamma (1-x) = \frac{\pi}{\sin \pi x}\ (4)$

... to arrive to write...

$\displaystyle \frac{1}{n}\ \sum_{k=1}^{n} \ln \Gamma(\frac{k}{n}) = \frac{1}{n}\ \ln \prod_{k=1}^{\frac{n}{2}} \frac{\pi}{\sin \pi \frac{k}{n}} = \ln \sqrt{\pi} - \ln (\prod_{k=1}^{\frac{n}{2}} \sin \pi \frac {k}{n})^{\frac{1}{n}}\ (5)$

As last step we recall the trigonometric identity...

$\displaystyle \prod_{k=1}^{n} \sin \pi \frac{k}{n} = \frac{n+1}{2^{n}}\ (6)$

... we arrive to write...

$\displaystyle \frac{1}{n}\ \sum_{k=1}^{n} \ln \Gamma(\frac{k}{n}) = \ln \sqrt{\pi} - \frac{1}{n}\ \ln (n+1) + \ln \sqrt{2}\ (7)$

... and now we push n to infinity obtaining...

$\displaystyle I = \int_{0}^{1} \ln \Gamma(x)\ dx = \ln \sqrt{2\ \pi}\ (8)$

Kind regards

$\chi$ $\sigma$
 
I used a slightly different way

$$

\begin{align*}

\int^1_0 \ln (\Gamma(t)) \, dt

&= \int^1_0 \ln (\Gamma(1-t)) \, dt \\

&= \int^1_0 \ln \left( \frac{\pi } { \Gamma(t) \sin( \pi t)} \right) \, dt \\

&= \int^1_0 \ln \left( \pi \right) \, dt - \int^1_0 \ln( \Gamma(t)) \, dt -\int^1_0 \sin( \pi t) \, dt \\

&= \ln ( \pi ) - \int^1_0 \ln( \Gamma(t)) \, dt + \ln(2) \\

&= \ln (2 \pi ) - \int^1_0 \ln( \Gamma(t)) \, dt \\

&= \ln ( \sqrt{2 \pi} )

\end{align*}

$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 105 ·
4
Replies
105
Views
8K
  • · Replies 4 ·
Replies
4
Views
3K