MHB Prove Log Gamma Integral: $\sqrt{2 \pi}$

Click For Summary
The integral of the logarithm of the Gamma function over the interval from 0 to 1 is shown to equal the logarithm of the square root of 2π. The proof utilizes the classical Riemann sum approach and the reflection formula for the Gamma function. By partitioning the interval and applying trigonometric identities, the integral simplifies to a form that reveals the desired result. An alternative method is also presented, confirming the same conclusion through a different series of transformations. Ultimately, both methods lead to the established equality of the integral with ln(√2π).
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the following

$$\int^1_0 \ln\left( \Gamma (x) \right) \, dx = \ln \left( \sqrt{2 \pi } \right) $$
 
Mathematics news on Phys.org
An elementary evaluation of the integral...

$\displaystyle I = \int_{0}^{1} \ln \Gamma(x)\ dx\ (1)$

... uses the 'classical' Riemann sum. Let's partition the interval [0,1] into n subintervals of length $\frac{1}{n}$ so that is...

$\displaystyle I = \lim_{n \rightarrow \infty} \frac{1}{n}\ \sum_{k=1}^{n} \ln \Gamma(\frac{k}{n})\ (2)$

If n is even we can write...

$\displaystyle \frac{1}{n}\ \sum_{k=1}^{n} \ln \Gamma(\frac{k}{n}) = \frac{1}{n}\ \ln \prod_{k=1}^{n} \Gamma(\frac{k}{n}) = \frac{1}{n}\ \ln \prod_{k=1}^{\frac{n}{2}} \{\Gamma(\frac{k}{n})\ \Gamma (1- \frac{k}{n}) \}\ (3) $

Now we use the 'reflection formula'...

$\displaystyle \Gamma (x)\ \Gamma (1-x) = \frac{\pi}{\sin \pi x}\ (4)$

... to arrive to write...

$\displaystyle \frac{1}{n}\ \sum_{k=1}^{n} \ln \Gamma(\frac{k}{n}) = \frac{1}{n}\ \ln \prod_{k=1}^{\frac{n}{2}} \frac{\pi}{\sin \pi \frac{k}{n}} = \ln \sqrt{\pi} - \ln (\prod_{k=1}^{\frac{n}{2}} \sin \pi \frac {k}{n})^{\frac{1}{n}}\ (5)$

As last step we recall the trigonometric identity...

$\displaystyle \prod_{k=1}^{n} \sin \pi \frac{k}{n} = \frac{n+1}{2^{n}}\ (6)$

... we arrive to write...

$\displaystyle \frac{1}{n}\ \sum_{k=1}^{n} \ln \Gamma(\frac{k}{n}) = \ln \sqrt{\pi} - \frac{1}{n}\ \ln (n+1) + \ln \sqrt{2}\ (7)$

... and now we push n to infinity obtaining...

$\displaystyle I = \int_{0}^{1} \ln \Gamma(x)\ dx = \ln \sqrt{2\ \pi}\ (8)$

Kind regards

$\chi$ $\sigma$
 
I used a slightly different way

$$

\begin{align*}

\int^1_0 \ln (\Gamma(t)) \, dt

&= \int^1_0 \ln (\Gamma(1-t)) \, dt \\

&= \int^1_0 \ln \left( \frac{\pi } { \Gamma(t) \sin( \pi t)} \right) \, dt \\

&= \int^1_0 \ln \left( \pi \right) \, dt - \int^1_0 \ln( \Gamma(t)) \, dt -\int^1_0 \sin( \pi t) \, dt \\

&= \ln ( \pi ) - \int^1_0 \ln( \Gamma(t)) \, dt + \ln(2) \\

&= \ln (2 \pi ) - \int^1_0 \ln( \Gamma(t)) \, dt \\

&= \ln ( \sqrt{2 \pi} )

\end{align*}

$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
971
Replies
1
Views
1K
Replies
6
Views
3K