MHB Prove No Integers Solve $ax^3+bx^2+cx+d=1$ for x=19,2 for x=62

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cubic Polynomial
AI Thread Summary
The discussion centers on proving that no integers \( a, b, c, \) and \( d \) can satisfy the polynomial equation \( ax^3 + bx^2 + cx + d = 1 \) at \( x = 19 \) and \( x = 62 \). The equations derived from these conditions lead to a linear Diophantine equation: \( 231469a + 3461b + 53c = 1 \). Since \( a, b, \) and \( c \) are integers, the equation must have integer solutions. However, the coefficients indicate that the left-hand side cannot equal 1, thus proving no integer solutions exist. Therefore, it is concluded that there are no integers \( a, b, c, \) and \( d \) that satisfy the original polynomial conditions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that there are no integers $a,\,b,\,c$ and $d$ such that the polynomial $ax^3+bx^2+cx+d$ equals 1 at $x=19$ and 2 at $x=62$.
 
Mathematics news on Phys.org
Well, to start with, since $ax^3+ bx^2+ cx+ d$ is 1 when x 19, $a(19)^3+ b(19)^2+ 19x+ d= 6859a+ 361b+ 19c+ d= 1$, And since it is 2 when x= 62, $a(62)^3+ b(62)^2+ a(62)+ d= 238328a+ 3844b+ 62c+ d= 2$,

Subtracting the first from the second, 231469a+ 3461b+ 53c= 1. Since a, b, and c are integers that is a linear Diophantine equation.
 
we have $f(62) - f(19) = a (62^3-19^3) + b(62^2 - 19^2) + c(62-19) = 1$
or $(62-19)(a(62^2 + 62 * 19 + 19^2) + b(62+ 19) +c) = 1$
LHS is a multiple of 43 and RHS is 1 so this does not have integer solution
 
Country Boy said:
Well, to start with, since $ax^3+ bx^2+ cx+ d$ is 1 when x 19, $a(19)^3+ b(19)^2+ 19x+ d= 6859a+ 361b+ 19c+ d= 1$, And since it is 2 when x= 62, $a(62)^3+ b(62)^2+ a(62)+ d= 238328a+ 3844b+ 62c+ d= 2$,

Subtracting the first from the second, 231469a+ 3461b+ 53c= 1. Since a, b, and c are integers that is a linear Diophantine equation.
because this is a challenge question you are required to answer it fully . this is not a question for help
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top