Prove projection of a measurable set from product space is measurable

  • Context: Undergrad 
  • Thread starter Thread starter Lagrange fanboy
  • Start date Start date
  • Tags Tags
    Measure theory
Click For Summary
SUMMARY

The discussion centers on the measurability of projections from product spaces, specifically addressing the claim that the embedding function ##e_b:\Omega_1\rightarrow \Omega_1\times\Omega_2, x\mapsto (x,b)## is measurable. It is established that if ##S\in \Sigma##, then the projection ##\pi_1(S)## belongs to ##\Sigma_1##, utilizing a lemma regarding inverse images of measurable functions. The conversation also highlights that while projections of measurable sets are generally measurable, exceptions exist, such as the projection of Borel measurable sets in ##\mathbb R^2##, which may not yield Borel sets.

PREREQUISITES
  • Understanding of measurable spaces and sigma-algebras
  • Familiarity with product spaces and their properties
  • Knowledge of projection functions and inverse images in measure theory
  • Basic concepts of Borel sets and analytic sets in topology
NEXT STEPS
  • Study the properties of product sigma-algebras in measure theory
  • Learn about the implications of the lemma regarding inverse images and sigma-algebras
  • Investigate the differences between Borel sets and analytic sets in detail
  • Explore examples of measurable functions and their projections in various contexts
USEFUL FOR

Mathematicians, statisticians, and students of measure theory who are interested in the properties of measurable functions and their projections within product spaces.

Lagrange fanboy
Messages
9
Reaction score
2
TL;DR
Given a set from a product sigma algebra, how do I prove that it's projection is measurable?
I was reading page 33 of https://staff.fnwi.uva.nl/p.j.c.spreij/onderwijs/TI/mtpTI.pdf when I saw this claim:
Given measurable spaces ##(\Omega_1,\Sigma_1), (\Omega_2,\Sigma_2)## and the product space ##(\Omega_1\times \Omega_2, \Sigma)## where ##\Sigma## is the product sigma algebra, the embedding ##e_b:\Omega_1\rightarrow \Omega_1\times\Omega_2, x\mapsto (x,b)## is measurable.
After some reduction, I notice that ##e^{-1}_b(S)=\emptyset## if ##S\not = \{(x,b)|x\in A\}## for some ##A\subseteq \Omega_1##, otherwise ##e^{-1}_b(S)=\pi_1(S)##, the projection of ##S## onto the first component. Here I'm stuck. I can't show that if ##S\in \Sigma## then ##\pi_1(S)\in \Sigma_1##. I thought about using structural induction, taking advantage of the fact that ##\Sigma## is the smallest sigma algebra generated, but I think for structural induction to work I need to have a well-founded/well-ordered relation, which I cannot find.
 
Last edited:
Physics news on Phys.org
I think you need a lemma from p.289
S Lang
 
  • Like
Likes   Reactions: Lagrange fanboy
Just an ignorant suggestion without doing the work: a measurable product set is presumably a union of rectangles with both sides measurable, and projection of a rectangle is a side. so projection of a measurable set is apparently a union of measurable sets, hence measurable. does something like this work?
 
You need the following simple fact/lemma:

Let a function ##f:X\to Y## be fixed, and let ##\Sigma## be a sigma-algebra on ##X##, and ##\mathcal C## be some collection of subsets in ##Y##. Assume that for any ##A\in\mathcal C## the inverse image ##f^{-1}(A)## belongs to ##\Sigma##. Then ##f^{-1}(B)\in\Sigma## for all ##B## in ##\Sigma(A)##, where ##\Sigma(A)## is the sigma-algebra generated by ##\mathcal C##.

One of the corollaries of the above lemma is the fact that if for a real-valued function ##f## the sets ##f^{-1}([a, \infty))## are measurable for all ##a\in\mathbb R##, then ##f^{-1}(B)## is measurable for any Borel set ##B\subset\mathbb R##. (This is also true for rays of form ##(a, \infty)##, ##(-\infty, a]##, ##(-\infty, a)##).

The proof of the lemma is quite elementary: consider the collection ##\mathcal B## of all ##B\subset Y## such that ##f^{-1}(B)\in\Sigma##. It is easy to show, using the fact that ##\Sigma## is a sigma-algebra, that ##\mathcal B## is also a sigma-algebra. Therefore ##\Sigma(\mathcal C) \subset\mathcal B##, which proves the statement.

Returning to the original question, it is easy to see that if ##A\in\Sigma_1##, ##B\in\Sigma_2##, then ##\pi_b^{-1}(A\times B)## is measurable (it is ##A## if ##b\in B##, and ##\varnothing## othervise). But such sets ##A\times B## generate ##\Sigma##, so the embedding ##\pi_b## is indeed measurable.

Finally, projections of measurable sets are not always measurable. For example, a coordinate projection of a Borel measurable set in ##\mathbb R^2## is not necessarily Borel. It is a so-called Souslin (a.k.a. analytic) set, but generally it is not Borel.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K