MHB Prove (tan^2 t−1)/(sec^2 t)=(tan t−cot t)/(tan t+cot t)

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The discussion focuses on proving the identity (tan² t - 1)/(sec² t) = (tan t - cot t)/(tan t + cot t). Participants explore various methods to simplify the expression, with one suggestion being to multiply the numerator and denominator by cot(t). This approach leads to a successful derivation of the identity, confirming that both sides are equal. The conversation emphasizes the desire for a concise solution, ideally in just a few steps. Ultimately, the identity is proven through algebraic manipulation and trigonometric identities.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
show that this is an identity

\begin{align*}\displaystyle
\frac{\tan^2 t -1}{\sec^2 t}
&=\frac{\tan t-\cot t}{\tan t+\cot t}\\
\frac{\tan^2 t -1}{\tan^2 t+1}&=
\end{align*}

OK I continued but I could not derive an equal identity

I saw a solution to this on SYM but it was many steps and got very bloated

there must be some way to do this in like 3 steps?
 
Mathematics news on Phys.org
karush said:
show that this is an identity

\begin{align*}\displaystyle
\frac{\tan^2 t -1}{\sec^2 t}
&=\frac{\tan t-\cot t}{\tan t+\cot t}\\
\frac{\tan^2 t -1}{\tan^2 t+1}&=
\end{align*}

OK I continued but I could not derive an equal identity

I saw a solution to this on SYM but it was many steps and got very bloated

there must be some way to do this in like 3 steps?
[math]\dfrac{tan^2(t) - 1}{tan^2(t) + 1}[/math]

Try multiplying the numerator and denominstor by cot(x).

-Dan
 
topsquark said:
[math]\dfrac{tan^2(t) - 1}{tan^2(t) + 1}[/math]

Try multiplying the numerator and denominstor by cot(x).

-Dan

oh cool!

[math]\dfrac{(tan^2(t) - 1)(\cot t)}{(tan^2(t) + 1)(\cot t)}
=\frac{\frac{\sin^\cancel{2} t}{\cos^\cancel{2} t}\frac{\cancel\cos t}{\cancel\sin t}-\frac{\cos t}{\sin t}}
{\frac{\sin^\cancel{2} t}{\cos^\cancel{2} t}\frac{\cancel\cos t}{\cancel\sin t}+\frac{\cos t}{\sin t}}
=\frac{\tan t-\cot t}{\tan t+\cot t}[/math]
 
karush said:
oh cool!

[math]\dfrac{(tan^2(t) - 1)(\cot t)}{(tan^2(t) + 1)(\cot t)}
=\frac{\frac{\sin^\cancel{2} t}{\cos^\cancel{2} t}\frac{\cancel\cos t}{\cancel\sin t}-\frac{\cos t}{\sin t}}
{\frac{\sin^\cancel{2} t}{\cos^\cancel{2} t}\frac{\cancel\cos t}{\cancel\sin t}+\frac{\cos t}{\sin t}}
=\frac{\tan t-\cot t}{\tan t+\cot t}[/math]
Or simply note that [math]cot(x) \cdot tan^2(x) = tan(x)[/math]. :)

-Dan
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K