Prove (tan^2 t−1)/(sec^2 t)=(tan t−cot t)/(tan t+cot t)

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
SUMMARY

The identity \(\frac{\tan^2 t - 1}{\sec^2 t} = \frac{\tan t - \cot t}{\tan t + \cot t}\) can be proven in a concise manner. By multiplying both the numerator and denominator of the left-hand side by \(\cot t\), the expression simplifies directly to the right-hand side. This approach streamlines the proof, avoiding lengthy derivations and demonstrating the equivalence in just a few steps.

PREREQUISITES
  • Understanding of trigonometric identities, specifically \(\tan\), \(\cot\), and \(\sec\).
  • Familiarity with algebraic manipulation of fractions.
  • Knowledge of the Pythagorean identity: \(\tan^2 t + 1 = \sec^2 t\).
  • Ability to perform simplifications involving trigonometric functions.
NEXT STEPS
  • Study the derivation of the Pythagorean identity in trigonometry.
  • Learn about the properties and applications of \(\cot\) and \(\tan\) functions.
  • Explore other trigonometric identities and their proofs for deeper understanding.
  • Practice simplifying complex trigonometric expressions using algebraic techniques.
USEFUL FOR

Students of mathematics, particularly those studying trigonometry, educators teaching trigonometric identities, and anyone looking to enhance their understanding of algebraic manipulation in trigonometric contexts.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
show that this is an identity

\begin{align*}\displaystyle
\frac{\tan^2 t -1}{\sec^2 t}
&=\frac{\tan t-\cot t}{\tan t+\cot t}\\
\frac{\tan^2 t -1}{\tan^2 t+1}&=
\end{align*}

OK I continued but I could not derive an equal identity

I saw a solution to this on SYM but it was many steps and got very bloated

there must be some way to do this in like 3 steps?
 
Mathematics news on Phys.org
karush said:
show that this is an identity

\begin{align*}\displaystyle
\frac{\tan^2 t -1}{\sec^2 t}
&=\frac{\tan t-\cot t}{\tan t+\cot t}\\
\frac{\tan^2 t -1}{\tan^2 t+1}&=
\end{align*}

OK I continued but I could not derive an equal identity

I saw a solution to this on SYM but it was many steps and got very bloated

there must be some way to do this in like 3 steps?
[math]\dfrac{tan^2(t) - 1}{tan^2(t) + 1}[/math]

Try multiplying the numerator and denominstor by cot(x).

-Dan
 
topsquark said:
[math]\dfrac{tan^2(t) - 1}{tan^2(t) + 1}[/math]

Try multiplying the numerator and denominstor by cot(x).

-Dan

oh cool!

[math]\dfrac{(tan^2(t) - 1)(\cot t)}{(tan^2(t) + 1)(\cot t)}
=\frac{\frac{\sin^\cancel{2} t}{\cos^\cancel{2} t}\frac{\cancel\cos t}{\cancel\sin t}-\frac{\cos t}{\sin t}}
{\frac{\sin^\cancel{2} t}{\cos^\cancel{2} t}\frac{\cancel\cos t}{\cancel\sin t}+\frac{\cos t}{\sin t}}
=\frac{\tan t-\cot t}{\tan t+\cot t}[/math]
 
karush said:
oh cool!

[math]\dfrac{(tan^2(t) - 1)(\cot t)}{(tan^2(t) + 1)(\cot t)}
=\frac{\frac{\sin^\cancel{2} t}{\cos^\cancel{2} t}\frac{\cancel\cos t}{\cancel\sin t}-\frac{\cos t}{\sin t}}
{\frac{\sin^\cancel{2} t}{\cos^\cancel{2} t}\frac{\cancel\cos t}{\cancel\sin t}+\frac{\cos t}{\sin t}}
=\frac{\tan t-\cot t}{\tan t+\cot t}[/math]
Or simply note that [math]cot(x) \cdot tan^2(x) = tan(x)[/math]. :)

-Dan
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K