Meden Agan
- 94
- 13
- Homework Statement
- For ##x > 0##, let ##f(x)## be the minimum value of ##\left|x-\sqrt{m^2+2 \, n^2}\right|## for all integers ##m, n##. Then, prove that $$\lim_{x \to \infty} f(x)=0.$$
- Relevant Equations
- Calculus, Number Theory.
Let ##f(x)= \min\limits_{m, n \in \mathbb Z} \left|x- \sqrt{m^2+2 \, n^2}\right|## be the minimum distance between a positive real ##x## and a number of the form ##\sqrt{m^2 + 2 n^2}## with ##m, n## integers.
Let us consider a radius ##R## and let us consider the set ##S_R## of integer points satisfying ##m^2 + 2 n^2 \le R^2##.
The ellipse enclosing them has area ##A(R) = \dfrac{\pi R^2}{\sqrt 2}##, and number geometry ensures its number of integer points ##N(R)## grows as ##\dfrac{\pi}{\sqrt 2} R^2## plus an error - proportional to ##R##; i.e. there exist positive constants ##c_1## and ##c_2## such that ##c_1 \, R^2 \le N(R) \le c_2 \, R^2## for ##R## large enough.
Each pair ##(m, n) \in S_R## determines the distance ##r = \sqrt{m^2+2 \, n^2}## between ##0## and ##R##. Two pairs can produce the same ##r##, but there are few coincidences with respect to ##N(R)##. Thus the number ##M(R)## of different distances satisfies ##M(R) \ge c_3 \, R^2## for a constant ##c_3 > 0##. By ordering these distances ##0 = r_0 < r_1 < \ldots < r_{M(R)-1} \le R##, the mean space between two consecutive distances is ##\dfrac{R}{M(R)} \le \dfrac{1}{c_3 \, R}##.
Now, if we choose a large ##x## and set ##R \approx x##, one of the ##r_k##s falls within at most ##\dfrac{1}{c_3 \, x}## from ##x##. Then, ##f(x) \le K/ x## with ##K = 1/c_3##. Since ##K/x## approaches zero when ##x \to \infty##, it immediately follows that $$\lim_{x \to \infty} f(x) = 0.$$
The values ##\sqrt{m^2+2 \, n^2}## become so dense on the positive half-line that the minimum deviation from any real number cancels as ##x## increases.
Is that correct?
Let us consider a radius ##R## and let us consider the set ##S_R## of integer points satisfying ##m^2 + 2 n^2 \le R^2##.
The ellipse enclosing them has area ##A(R) = \dfrac{\pi R^2}{\sqrt 2}##, and number geometry ensures its number of integer points ##N(R)## grows as ##\dfrac{\pi}{\sqrt 2} R^2## plus an error - proportional to ##R##; i.e. there exist positive constants ##c_1## and ##c_2## such that ##c_1 \, R^2 \le N(R) \le c_2 \, R^2## for ##R## large enough.
Each pair ##(m, n) \in S_R## determines the distance ##r = \sqrt{m^2+2 \, n^2}## between ##0## and ##R##. Two pairs can produce the same ##r##, but there are few coincidences with respect to ##N(R)##. Thus the number ##M(R)## of different distances satisfies ##M(R) \ge c_3 \, R^2## for a constant ##c_3 > 0##. By ordering these distances ##0 = r_0 < r_1 < \ldots < r_{M(R)-1} \le R##, the mean space between two consecutive distances is ##\dfrac{R}{M(R)} \le \dfrac{1}{c_3 \, R}##.
Now, if we choose a large ##x## and set ##R \approx x##, one of the ##r_k##s falls within at most ##\dfrac{1}{c_3 \, x}## from ##x##. Then, ##f(x) \le K/ x## with ##K = 1/c_3##. Since ##K/x## approaches zero when ##x \to \infty##, it immediately follows that $$\lim_{x \to \infty} f(x) = 0.$$
The values ##\sqrt{m^2+2 \, n^2}## become so dense on the positive half-line that the minimum deviation from any real number cancels as ##x## increases.
Is that correct?
Last edited: