Prove that Lim x->c f(x)g(x)=0 if Lim x->c f(x)=0 and |g(x)|<K

  • Thread starter Thread starter DumpmeAdrenaline
  • Start date Start date
Click For Summary
The discussion establishes that if the limit of f(x) as x approaches c is zero and g(x) is bounded by K, then the limit of the product f(x)g(x) also approaches zero, even if g(x) is discontinuous at c. The argument relies on the relationship |f(x)g(x)| = |h(x)| < Kϵ, demonstrating that the outputs can be made arbitrarily close to zero. It is emphasized that the product remains zero regardless of g(x)'s discontinuity, as long as it remains bounded. The conclusion is that the proposition holds true under these conditions, but does not apply if c approaches infinity. Thus, the limit of the product is confirmed to be zero when f(x) approaches zero and g(x) is bounded.
DumpmeAdrenaline
Messages
80
Reaction score
2
Homework Statement
Suppose Lim x->c f(x)=0 and that g(x) is bounded by a number K>0 such that |g(x)|<K. Define h by h(x)=f(x)g(x). Prove that Lim x->c h(x)=0.
Relevant Equations
|x-c|<δ -> |f(x)-0|<ϵ
|g(x)|<K
|x-c|<δ -> |f(x)-0|<ϵ
|g(x)|<K
|g(x)||f(x)-0|<K*ϵ
The product of the absolute values equals the absolute value of the product.
|f(x)g(x))|=|h(x)|<K*ϵ
For a range of input values within δ of c, the corresponding outputs can be made within Kϵ of 0. What if g(x) has a jump at x=c but is bounded by K. If approaching x=c from the right g(x) approaches L1 where |L1|<K and if approaching x=c from the left g(x) approaches L2 where |L2|<K. Will the above inequality holds because f(x)=0 and g(x) is bounded though discontinuous fg is again a zero function.
 
Physics news on Phys.org
The proposition is true even if ##g## is discontinuous at ##c##.
 
  • Like
Likes DumpmeAdrenaline
It works with zero as a limit since ##0\cdot c = 0## as long as ##c## is any number. If ##c\in \{\pm \infty \}## then we cannot conclude anything, which is why we need that ##g(x)## is bounded. But even if it jumps around, multiplying by zero will result in zero, i.e. the gaps become smaller and smaller if we approach zero. It would not work with any other finite limit.
 
  • Like
Likes DumpmeAdrenaline

Similar threads

  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 3 ·
Replies
3
Views
746
  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K