Prove that range ##T'## = ##(\text{null}\ T)^0##

Click For Summary
SUMMARY

The discussion centers on proving that the range of the linear transformation ##T'## is equal to the annihilator of the null space of ##T##, denoted as ##(\text{null}\ T)^0##. Key steps include demonstrating that both subspaces are isomorphic and have the same dimension. The proof utilizes a contradiction approach to show that any linear functional in ##(\text{null}\ T)^0## must also belong to the range of ##T'##, thereby confirming the equality of the two subspaces.

PREREQUISITES
  • Understanding of linear transformations and their properties.
  • Familiarity with the concepts of null space and range in linear algebra.
  • Knowledge of dual spaces and linear functionals.
  • Experience with proof techniques, particularly proof by contradiction.
NEXT STEPS
  • Study the properties of dual spaces in linear algebra.
  • Learn about the Rank-Nullity Theorem and its implications.
  • Explore advanced topics in linear transformations, including isomorphisms.
  • Investigate different proof techniques in mathematics, focusing on contradiction methods.
USEFUL FOR

Mathematicians, students of linear algebra, and anyone interested in advanced topics related to linear transformations and their properties.

zenterix
Messages
774
Reaction score
84
Homework Statement
Prove the following theorem (Axler, Linear Algebra Done Right, Theorem 3.109)

Suppose ##V## and ##W## are finite-dimensional and ##T\in L(V,W)##. Then

(a) ##\text{dim range}\ T' = \text{dim range}\ T##

(b) ##\text{range}\ T'=(\text{null}\ T)^0##
Relevant Equations
(a)

##\text{dim null}\ T' = \text{dim null}\ T + \text{dim}\ W-\text{dim}\ V\tag{1}##

##=\text{dim} W'-\text{dim range}\ T'\tag{2}##

##=\text{dim}\ W-\text{dim range}\ T'\tag{3}##

From (1) and (3) we have

##\text{dim range}\ T'=\text{dim}\ V-\text{dim null}\ T=\text{dim range}\ T\tag{4}##
My question is about item (b).

(b)

Here is what I drew up to try to visualize the result to be proved

1698618821100.png


The general idea, I think, is that

1) ##(\text{null}\ T)^0## and ##\text{range}\ T'## are both subspaces of ##V'=L(V,\mathbb{F})##.

2) We can show that they have the same dimension.

3)We can show that ##\text{range}\ T' \subseteq (\text{null}\ T)^0##

4) From (2) and (3) we can prove that the two subspaces are in fact the same subspace.

Honestly, I did steps (1)-(3) myself and was looking for a way to infer (4) but didn't realize that I could use (2) and (3) to do so, so I looked at the proof in the book.

I'd like to know if there is another way to infer (4).

Here is what I have

##(\text{null}\ T)^0## is by definition all the linear functionals in ##V'## that map ##\text{null}\ T## to 0 in ##\mathbb{F}##.

For every ##\varphi\in W'##, the linear functional ##\varphi\circ T## maps ##\text{null}\ T## to 0 in ##\mathbb{F}##, so ##\varphi\circ T## is in ##(\text{null}\ T)^0##.

Now, at this point, it could be that there are other elements in ##(\text{null}\ T)^0## that are not one of the ##\varphi\circ T##.

How can I prove that this is not possible (in an alternative manner to (4))?
 
Last edited:
Physics news on Phys.org
I think I found the answer to my question. It uses the dimensions as well.

Let's use a proof by contradiction.

Suppose there were an ##\alpha\in (\text{null }\ T)^0## that is not in ##\text{range}\ T'##.

From (a) we know that range ##T'## and range ##T## have the same dimension and so are isomorphic.

In addition, we have dim ##V## = dim null ##T## + dim range ##T##.

However, the dimension of the complement of null ##T## in ##V## also has dimension dim range ##T##.

Thus this complement is isomorphic with range ##T##.

Let ##v_1,...,v_n## be a basis for this complement subspace. ##\alpha\in(\text{null}\ T)^0## maps these to the scalars ##f_1, ..., f_n## in ##\mathbb{F}##.

##T## maps ##v_1,...,v_n## to ##w_1, ...,w_n## in range ##T##.

Let's define a ##\varphi\in W'## by ##\varphi(w_i)=f_i## for ##i=1,...,n##.

Then, ##\varphi\circ T## maps ##v_1,...,v_n## to ##f_1,...,f_n## and so ##\varphi\circ T=\alpha##.

Thus, ##\alpha\in \text{range}\ T'##, contradicting our initial assumption.

We can then infer, by proof by contradiction, that all vectors in ##(\text{null }\ T)^0## are in range ##T'##.

And since we have proved that range ##T'\subseteq (\text{null}\ T)^0## we can conclude that

$$\text{range}\ T'=(\text{null}\ T)^0$$
 

Similar threads

Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 24 ·
Replies
24
Views
4K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K