Question: Let T be a diagonalizable linear operator on a finite-dimensional vector space, and let m be any positive integer. Prove that T and T^m are simultaneously diagonalizable.(adsbygoogle = window.adsbygoogle || []).push({});

Definition: Two linear operators T and U are finite-dimensional vector space V are called simultaneously diagonalizable if there exists an ordered basis B for V such that both [T]B and B are diagonal matrices. Similarly, A and B are called simultaneously diagonalizable if there exists and invertible matrix Q such that Q-1AQ and Q-1BQ are diagonal matrices.

Attempt at a solution: If T is a linear operator then there is a basis B for V such that [T]B = A is a matrix representation of T. Now, T is diagonalizable and therefore there is a invertible matrix Q such that C = Q-1AQ is a diagonal matrix. Recall that A = QCQ-1 and A^m = QC^m Q-1 = B which is a diagonal matrix. So, A*A^m = AB = (QCQ-1)(QC^m Q-1) = QC(Q-1 Q)C^m Q-1 = QC C^m Q-1) = QC^m CQ-1 [since diagonal matrices commute] = QC^m Q-1 QCQ-1 = (QC^m Q-1)( QCQ-1) = A^m A = BA. Therefore T and T^m commute and are simultaneously diagonalizable.

I think I am missing something.

Any suggestions?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Prove that T and T^m are simultaneously diagonalizable.

**Physics Forums | Science Articles, Homework Help, Discussion**