Prove that terms cyclic in ##a,b,c##, are in ##\text{AP}##

Click For Summary

Homework Help Overview

The discussion revolves around proving that the terms cyclic in \(a, b, c\) are in arithmetic progression (AP). The original poster presents an algebraic approach to derive expressions for the terms based on the definitions of \(a\), \(b\), and \(c\) in terms of a common difference \(d\).

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants explore various algebraic manipulations to show that the terms \(a^2(b+c)\), \(b^2(c+a)\), and \(c^2(a+b)\) are in AP. Some suggest using properties of AP to simplify the proof, while others express concerns about the complexity of the algebra involved.

Discussion Status

Multiple approaches are being discussed, including algebraic substitutions and properties of AP. Some participants have provided alternative methods that seem to require less algebra, while others are still seeking a more straightforward solution. There is no explicit consensus on a single method, but several productive directions have been identified.

Contextual Notes

There is a mention of the need for clarity regarding whether \(a\), \(b\), and \(c\) are consecutive terms in an AP, as this affects the interpretation of the problem. Additionally, some participants question the assumptions made about the terms being part of an AP.

brotherbobby
Messages
766
Reaction score
171
Homework Statement
If ##a,b,c## are in ##\text{AP}##, prove that ##\boxed{a^2(b+c), b^2(c+a), c^2(a+b)}## are also in ##\boxed{\text{AP}}##.
Relevant Equations
If terms ##a,b,c## are in ##\text{AP}##, then ##b-a = c-b = d##, where ##d## is the common difference.
Thus ##b = a+d## and ##c = a+2d##.
(This implies that the required expressions in the box above can be reduced to those having only ##a## and ##d##, eliminating ##b## and ##c## from them)
1699528070331.png
Problem statement :
Let me copy and paste the problem as it appears in the text to the right.

Attempt : We have the terms of the ##\text{AP}## as ##a, \;b = a+d, \;c = a+2d##
Let the first term of the required expression be ##t_1 = a^2(b+c) = a^2(2a+3d)=2a^3+3a^2d\dots\quad (1)##
Let the second term of the required expression be ##t_2 = b^2(c+a) = (a+d)^2(a+a+2d) = 2(a+d)^2(a+d) = 2a^3+6a^2d+6ad^2+2d^3\dots\quad (2)##.
Let the third term of the expression be ##t_3= c^2(a+b)=(a+2d)^2(2a+d) = 2a^3+9a^2d+12ad^2+4d^3\dots\quad (3)##
(after some algebra).
Subtracting ##(2) - (1)##, we obtain ##t_2-t_1 = 3a^2d+6ad^2+2d^3## and ##(3)-(2)##, ##t_3-t_2 = 3a^2d+6ad^2+2d^3## *
But this is the property of an ##\text{AP}##, whereby ##t_3-t_2=t_2-t_1##.
Hence the required terms ##\boldsymbol{a^2(b+c), b^2(c+a), c^2(a+b)}## are also in ##\mathbf{\text{AP}}##.

* I can't seem to ##\mathrm{\LaTeX}## this expression. Any clues as to why?

Question (doubt) : I completed the proof, but in a way that is not smart. I wrote out the required terms using ##a## and ##d## and did algebra, but did not use the properties of an AP,
For instance, if ##a_1, a_2, \dots, a_n## are ##n## numbers in AP, then we can show that ##a_1\pm k, a_2\pm k, \dots, a_n\pm k## are also in AP. Likewise, we can also show that ##\frac{pa_1}{q}, \frac{pa_2}{q}, \dots, \frac{pa_n}{q}\quad (p,q\ne0)## are also in AP.
To give you a feel of what I mean, I copy and paste below to the right how the author has answered an easier question of the same type :

1699528197114.png

When I solved this problem before, I again used the method above, viz. express ##c## and ##b## in terms of ##a## and ##d##.

Request : Can someone give a hint of a "smarter" solution to the problem above, whereby I can use the properties of AP and manipulate th variables ##a,b,c## accordingly without resorting to involved algebra?
 
Last edited:
Physics news on Phys.org
Another way is to notice that three numbers form an AP if and only if the middle is the average of the other two. So you are given that ##b=\frac{a+c}2## and you need to show that

##b^2(a+c)=\frac{a^2(b+c)+c^2(b+a)}2##

after substitutions this becomes

##\frac{(a+c)^3}4=\frac{a^2(a+3c)+c^2(3a+c)}4##

which can be checked easily. It still needs some algebra though.
 
  • Like
Likes   Reactions: PeroK
Re ##\LaTeX ## question: with Reply and toggle BB I see

brotherbobby said:
Code:
[FONT=times new roman]Subtracting ##(2) - (1)##, we obtain ...
 ##t_3-t_2 = [FONT=times new roman]3a^2d+6ad^2+2d^3## 
[FONT=times new roman]*
A blunt copy/paste gives
##t_3-t_2 = 3a^2d+6ad^2+2d^3## So the ##\LaTeX ## is ok.

But a change font encloses the second ## and that breaks the math.

##\ ##
 
  • Like
Likes   Reactions: SammyS
It must be slightly easier to let ##a = b -d## and ##c = b +d##. Then the new middle term is ##2b^3##. And it is enough to show that
$$(b+d)^2(2b-d) + (b-d)^2(2b+d) = 4b^3$$Which comes out quite easily.
 
Though, to be overly picky, the author should have stated a,b,c are _ consecutive terms_ in an AP. No reason they can't be the, e.g., 7th, 13th and 59th terms in an AP.
 
I tried to find a reason why this result holds. First, if ##a, b, c## is an AP with common difference ##d##, then ##a+b, a+c, b+c## is an AP with the same difference ##d##. Now, for any ##x, y## there is a unique number ##z## such that ##(a+b)x, (a+c)y, (b+c)z## is an AP. And, in fact$$z = \frac{2(a+c)y - (a+b)x}{b+c}$$The first thing we might try is setting ##x = c, y = b##, in which case ##z = a + \frac{2d^2}{b + c}##, which is not ##a##.

But, if we set ##x = c^2, y = b^2##, then$$z = \frac{2(a+c)b^2 - (a+b)c^2}{b+c} = a^2$$But, it's still not clear why this simplifies to ##a^2##, other then because that's what the algebra tells you!
 
WWGD said:
Though, to be overly picky, the author should have stated a,b,c are _ consecutive terms_ in an AP. No reason they can't be the, e.g., 7th, 13th and 59th terms in an AP.
When we say that three numbers ##a,b,c## are in AP, we don't mean they are a part of an AP. If they are the 7th, 13th and 59th terms of an AP, they wouldn't be in AP themselves.
 
  • Like
Likes   Reactions: PeroK
Thank you all for your comments. Your methods work and with less algebra than mine. However, after a search on the internet I have found the type of solution I was looking for. It is smart, but one has to know it in advance I suppose, or else not be able to "invent" it. Since I am a bit late with my response, let me start from the beginning.

1700129680822.png
Problem statement :
Solution :
Please see my attempt in post #1. It was long winded and algebraically involved. I wanted to know if one can use the properties of an AP to solve the problem, keeping the algebra to a minimum.

\begin{equation*}
\begin{split}
a,b,c & \rightarrow \text{in AP} \\
a(ab+bc+ca), b(ab+bc+ca), c(ab+bc+ca) & \rightarrow \text{in AP}\quad\text{(property of AP)}\\
a^2b+abc+a^2c, b^2a+b^2c+abc, abc+c^2b+c^2a & \rightarrow \text{in AP}\\
a^2b+a^2c,b^2a+b^2c, c^2a+c^2b &\rightarrow \text{in AP}\\
\boxed{a^2(b+c),b^2(c+a),c^2(a+b)}&\rightarrow \text{in AP} \quad\color{green}{\huge\checkmark}\\
\end{split}
\end{equation*}
 
Last edited:

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
Replies
18
Views
2K
Replies
7
Views
2K
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
24
Views
2K
Replies
4
Views
2K
Replies
4
Views
2K