- #1
- 380
- 7
Homework Statement
Let ##f:[-1,5]→ℝ## such that ##f(x)= \left\{
\begin{array}{l}
3, -1≤x<0 \\
0 , 0≤x≤2 \\
-2, 2<x≤5
\end{array}
\right. ##. Prove f is Riemann integrable.
3. The Attempt at a Solution
Obviously f is bounded.
Let ##ε>0## arbitrarily.
Let partition of interval [-1,5] be P={-1,0,2,5}.
Then ##U(P,f)=3*(0-(-1))+0*(2-0)+(-2)*(5-2)=-3##
and ##L(P,f)=3*(0-(-1))+0*(2-0)+(-2)*(5-2)=-3##
Therefore ##U(P,f)-L(P,f)=0<ε##
Here comes the question: Is the partition I chose valid and correct?
Last edited: