MHB Prove there exists a matrix with certain entries and determinant

Arnold1
Messages
16
Reaction score
0
Hi. Here is a problem I found in my algebra book and I don't know how to solve it. Could you please help me?

Show that there exists a matrix A \in M(n,n;R), such that m_{ij} \in \{-1,0,1\} and det A=1995 (I think it can be any other number as well, but the book was printed in 1995 :) )

My problem is that I don't know what I should do to prove that there exist a certain matrix. I guess I should show such a matrix, but I don't know how to do that anyway.
 
Physics news on Phys.org
Arnold said:
Hi. Here is a problem I found in my algebra book and I don't know how to solve it. Could you please help me?

Show that there exists a matrix A \in M(n,n;R), such that m_{ij} \in \{-1,0,1\} and det A=1995 (I think it can be any other number as well, but the book was printed in 1995 :) )

My problem is that I don't know what I should do to prove that there exist a certain matrix. I guess I should show such a matrix, but I don't know how to do that anyway.
Let $A_n$ be the $n\times n$ matrix with $+1$ everywhere in the first column and everywhere on the main diagonal, $-1$ everywhere else on the top row, and $0$ in every other position. Its determinant is $$ |A_n| = \begin{vmatrix}1&-1&-1&-1&\ldots&-1 \\ 1&1&0&0&\ldots&0 \\ 1&0&1&0&\ldots&0 \\ 1&0&0&1&\ldots&0 \\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots \\ 1&0&0&0&\ldots&1 \end{vmatrix}$$ Now add each other row to the top row (which does not change the determinant). The top row then becomes $n\ \ 0\ \ 0\ \ 0\ldots$. If you expand along the top row, you see that $|A_n| = n.$ Finally, let $n=1995.$
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
Replies
34
Views
3K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K