Prove this problem that involves Mathematical induction

Click For Summary
The discussion focuses on proving that \(5^n + 3\) is divisible by 4 using mathematical induction. The initial base case is checked for \(n=1\), confirming the statement holds true. A suggestion is made to start the induction at \(n=0\) instead. The conversation also touches on the properties of modular arithmetic, specifically how \(5^n \mod 4\) simplifies to \(1^n + 3 \mod 4\), leading to the conclusion that the expression is congruent to 0 modulo 4. Overall, the participants clarify the steps in the induction process and the implications of modular arithmetic.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
See attached
Relevant Equations
Mathematical induction
1653775300627.png


1653775339005.png


Ok, would i be correct to approach it this way,
Let ##n=1##. If ##n=1##, then ##5^1+3## is divisible by ##4##, the statement is true for ##n=1##.
Assume its true for ##n=k## ∀ ##kε\mathbb{z}^{+}.## Then ##5^k+3## is divisible by ##4.##
i.e ##5^k+3=4m## ∀ ##m ε\mathbb{z}^{+}##
Let ##n=k+1.## Then,
##5^{k+1} +3=5^{k+1} -5^k +5^k +3##
##=5^k(5-1)+5^k+3##
##=5^k(4)+5^k+3##
##=5^k(4)+m##
 
Last edited:
Physics news on Phys.org
chwala said:
Homework Statement:: See attached
Relevant Equations:: Mathematical induction

View attachment 302050

View attachment 302051

Ok, would i be correct to approach it this way,
Let ##n=1##. If ##n=1##, then ##5^1+3## is divisible by ##4##, the statement is true for ##n=1##.
Assume its true for ##n=k## ∀ ##kε\mathbb{z}^{+}.## Then ##5^k+3## is divisible by ##4##
i.e ##5^k+3=4m## ∀ ##m ε\mathbb{z}^{+}##
Let ##n=k+1##
##5^{k+1} +3=5^{k+1} -5^k +5^k +3##
##=5^k(5-1)+5^k+3##
##=5^k(4)+5^k+3##
##=5^k(4)+m##
Looks good, except that the induction base should be ##n=0##.

And of course, it is easier to prove it by the fact that ##\mathbb{Z}\longrightarrow \mathbb{Z}/4\mathbb{Z}## given by ##n\longmapsto n \pmod 4## is a ring homomorphism, i.e. modulo respects addition and multiplication.
 
fresh_42 said:
Looks good, except that the induction base should be ##n=0##.

And of course, it is easier to prove it by the fact that ##\mathbb{Z}\longrightarrow \mathbb{Z}/4\mathbb{Z}## given by ##n\longmapsto n \pmod 4## is a ring homomorphism, i.e. modulo respects addition and multiplication.
For addition, i can see that ##1+4=4+1=1##
and multiplication, ##1⋅4=4⋅1=0##
 
chwala said:
For addition, i can see that ##1+4=4+1=1##
and multiplication, ##1⋅4=4⋅1=0##
It is ##(5^n+3) \pmod 4 = 5^n \pmod 4 +3 \pmod 4= (5 \pmod 4)^n+ 3\pmod 4= 1^n \pmod 4 +3 \pmod 4=0 \pmod 4.##
 
  • Like
Likes chwala
fresh_42 said:
It is ##(5^n+3) \pmod 4 = 5^n \pmod 4 +3 \pmod 4= (5 \pmod 4)^n+ 3\pmod 4= 1^n \pmod 4 +3 \pmod 4=0 \pmod 4.##
Implying that for multiplication we shall end up with...

##1^n \pmod 4 ⋅3 \pmod 4=3⋅3=1 \pmod 4.##
 
chwala said:
Implying that for multiplication we shall end up with...

##1^n \pmod 4 ⋅3 \pmod 4=3⋅3=1 \pmod 4.##
No. ##1\cdot 1= 1##. Not ##3##.
 
fresh_42 said:
No. ##1\cdot 1= 1##. Not ##3##.
Sorry let me get this right,
##1^n \pmod 4=3##
##3 \pmod 4=3## Correct? and ##3⋅3## in##\mod 4=1##
 
chwala said:
Sorry let me get this right,
##1^n \pmod 4=3##
##3 \pmod 4=3## Correct? and ##3⋅3## in##\mod 4=1##
No.
\begin{align*}
1 \pmod 4 &= 1\\
1\cdot 1 \pmod 4 &= 1\\
1\cdot 1 \cdot 1 \pmod 4&=1\\
\ldots &\ldots \\
1^n \pmod 4 &=1
\end{align*}

Where do you get the three from?
$$
\underbrace{\underbrace{1^n\pmod 4}_{=1}+\underbrace{3\pmod 4}_{=3}}_{=4 \pmod 4 =0}
$$
 
fresh_42 said:
No.
\begin{align*}
1 \pmod 4 &= 1\\
1\cdot 1 \pmod 4 &= 1\\
1\cdot 1 \cdot 1 \pmod 4&=1\\
\ldots &\ldots \\
1^n \pmod 4 &=1
\end{align*}

Where do you get the three from?
$$
\underbrace{\underbrace{1^n\pmod 4}_{=1}+\underbrace{3\pmod 4}_{=3}}_{=4 \pmod 4 =0}
$$
True, i meant under 'multiplication' not 'addition modulo'
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
7
Views
4K
Replies
2
Views
1K
Replies
3
Views
1K
  • · Replies 23 ·
Replies
23
Views
2K
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K