Prove this problem that involves Mathematical induction

chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
See attached
Relevant Equations
Mathematical induction
1653775300627.png


1653775339005.png


Ok, would i be correct to approach it this way,
Let ##n=1##. If ##n=1##, then ##5^1+3## is divisible by ##4##, the statement is true for ##n=1##.
Assume its true for ##n=k## ∀ ##kε\mathbb{z}^{+}.## Then ##5^k+3## is divisible by ##4.##
i.e ##5^k+3=4m## ∀ ##m ε\mathbb{z}^{+}##
Let ##n=k+1.## Then,
##5^{k+1} +3=5^{k+1} -5^k +5^k +3##
##=5^k(5-1)+5^k+3##
##=5^k(4)+5^k+3##
##=5^k(4)+m##
 
Last edited:
Physics news on Phys.org
chwala said:
Homework Statement:: See attached
Relevant Equations:: Mathematical induction

View attachment 302050

View attachment 302051

Ok, would i be correct to approach it this way,
Let ##n=1##. If ##n=1##, then ##5^1+3## is divisible by ##4##, the statement is true for ##n=1##.
Assume its true for ##n=k## ∀ ##kε\mathbb{z}^{+}.## Then ##5^k+3## is divisible by ##4##
i.e ##5^k+3=4m## ∀ ##m ε\mathbb{z}^{+}##
Let ##n=k+1##
##5^{k+1} +3=5^{k+1} -5^k +5^k +3##
##=5^k(5-1)+5^k+3##
##=5^k(4)+5^k+3##
##=5^k(4)+m##
Looks good, except that the induction base should be ##n=0##.

And of course, it is easier to prove it by the fact that ##\mathbb{Z}\longrightarrow \mathbb{Z}/4\mathbb{Z}## given by ##n\longmapsto n \pmod 4## is a ring homomorphism, i.e. modulo respects addition and multiplication.
 
fresh_42 said:
Looks good, except that the induction base should be ##n=0##.

And of course, it is easier to prove it by the fact that ##\mathbb{Z}\longrightarrow \mathbb{Z}/4\mathbb{Z}## given by ##n\longmapsto n \pmod 4## is a ring homomorphism, i.e. modulo respects addition and multiplication.
For addition, i can see that ##1+4=4+1=1##
and multiplication, ##1⋅4=4⋅1=0##
 
chwala said:
For addition, i can see that ##1+4=4+1=1##
and multiplication, ##1⋅4=4⋅1=0##
It is ##(5^n+3) \pmod 4 = 5^n \pmod 4 +3 \pmod 4= (5 \pmod 4)^n+ 3\pmod 4= 1^n \pmod 4 +3 \pmod 4=0 \pmod 4.##
 
  • Like
Likes chwala
fresh_42 said:
It is ##(5^n+3) \pmod 4 = 5^n \pmod 4 +3 \pmod 4= (5 \pmod 4)^n+ 3\pmod 4= 1^n \pmod 4 +3 \pmod 4=0 \pmod 4.##
Implying that for multiplication we shall end up with...

##1^n \pmod 4 ⋅3 \pmod 4=3⋅3=1 \pmod 4.##
 
chwala said:
Implying that for multiplication we shall end up with...

##1^n \pmod 4 ⋅3 \pmod 4=3⋅3=1 \pmod 4.##
No. ##1\cdot 1= 1##. Not ##3##.
 
fresh_42 said:
No. ##1\cdot 1= 1##. Not ##3##.
Sorry let me get this right,
##1^n \pmod 4=3##
##3 \pmod 4=3## Correct? and ##3⋅3## in##\mod 4=1##
 
chwala said:
Sorry let me get this right,
##1^n \pmod 4=3##
##3 \pmod 4=3## Correct? and ##3⋅3## in##\mod 4=1##
No.
\begin{align*}
1 \pmod 4 &= 1\\
1\cdot 1 \pmod 4 &= 1\\
1\cdot 1 \cdot 1 \pmod 4&=1\\
\ldots &\ldots \\
1^n \pmod 4 &=1
\end{align*}

Where do you get the three from?
$$
\underbrace{\underbrace{1^n\pmod 4}_{=1}+\underbrace{3\pmod 4}_{=3}}_{=4 \pmod 4 =0}
$$
 
fresh_42 said:
No.
\begin{align*}
1 \pmod 4 &= 1\\
1\cdot 1 \pmod 4 &= 1\\
1\cdot 1 \cdot 1 \pmod 4&=1\\
\ldots &\ldots \\
1^n \pmod 4 &=1
\end{align*}

Where do you get the three from?
$$
\underbrace{\underbrace{1^n\pmod 4}_{=1}+\underbrace{3\pmod 4}_{=3}}_{=4 \pmod 4 =0}
$$
True, i meant under 'multiplication' not 'addition modulo'
 
Back
Top