Prove this problem that involves Mathematical induction

Click For Summary
SUMMARY

The forum discussion centers on proving the divisibility of the expression \(5^n + 3\) by 4 using mathematical induction. The initial base case is established for \(n=1\), but a participant suggests that the induction base should start at \(n=0\). The proof involves demonstrating that \(5^n + 3 \equiv 0 \pmod{4}\) through the properties of ring homomorphisms and modular arithmetic. The discussion highlights the importance of correctly applying modular operations in both addition and multiplication.

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with modular arithmetic
  • Knowledge of ring homomorphisms
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the principles of mathematical induction in depth
  • Explore modular arithmetic and its applications in number theory
  • Learn about ring theory and homomorphisms
  • Practice problems involving divisibility and modular proofs
USEFUL FOR

Mathematics students, educators, and anyone interested in number theory and proof techniques will benefit from this discussion.

chwala
Gold Member
Messages
2,828
Reaction score
421
Homework Statement
See attached
Relevant Equations
Mathematical induction
1653775300627.png


1653775339005.png


Ok, would i be correct to approach it this way,
Let ##n=1##. If ##n=1##, then ##5^1+3## is divisible by ##4##, the statement is true for ##n=1##.
Assume its true for ##n=k## ∀ ##kε\mathbb{z}^{+}.## Then ##5^k+3## is divisible by ##4.##
i.e ##5^k+3=4m## ∀ ##m ε\mathbb{z}^{+}##
Let ##n=k+1.## Then,
##5^{k+1} +3=5^{k+1} -5^k +5^k +3##
##=5^k(5-1)+5^k+3##
##=5^k(4)+5^k+3##
##=5^k(4)+m##
 
Last edited:
Physics news on Phys.org
chwala said:
Homework Statement:: See attached
Relevant Equations:: Mathematical induction

View attachment 302050

View attachment 302051

Ok, would i be correct to approach it this way,
Let ##n=1##. If ##n=1##, then ##5^1+3## is divisible by ##4##, the statement is true for ##n=1##.
Assume its true for ##n=k## ∀ ##kε\mathbb{z}^{+}.## Then ##5^k+3## is divisible by ##4##
i.e ##5^k+3=4m## ∀ ##m ε\mathbb{z}^{+}##
Let ##n=k+1##
##5^{k+1} +3=5^{k+1} -5^k +5^k +3##
##=5^k(5-1)+5^k+3##
##=5^k(4)+5^k+3##
##=5^k(4)+m##
Looks good, except that the induction base should be ##n=0##.

And of course, it is easier to prove it by the fact that ##\mathbb{Z}\longrightarrow \mathbb{Z}/4\mathbb{Z}## given by ##n\longmapsto n \pmod 4## is a ring homomorphism, i.e. modulo respects addition and multiplication.
 
fresh_42 said:
Looks good, except that the induction base should be ##n=0##.

And of course, it is easier to prove it by the fact that ##\mathbb{Z}\longrightarrow \mathbb{Z}/4\mathbb{Z}## given by ##n\longmapsto n \pmod 4## is a ring homomorphism, i.e. modulo respects addition and multiplication.
For addition, i can see that ##1+4=4+1=1##
and multiplication, ##1⋅4=4⋅1=0##
 
chwala said:
For addition, i can see that ##1+4=4+1=1##
and multiplication, ##1⋅4=4⋅1=0##
It is ##(5^n+3) \pmod 4 = 5^n \pmod 4 +3 \pmod 4= (5 \pmod 4)^n+ 3\pmod 4= 1^n \pmod 4 +3 \pmod 4=0 \pmod 4.##
 
  • Like
Likes   Reactions: chwala
fresh_42 said:
It is ##(5^n+3) \pmod 4 = 5^n \pmod 4 +3 \pmod 4= (5 \pmod 4)^n+ 3\pmod 4= 1^n \pmod 4 +3 \pmod 4=0 \pmod 4.##
Implying that for multiplication we shall end up with...

##1^n \pmod 4 ⋅3 \pmod 4=3⋅3=1 \pmod 4.##
 
chwala said:
Implying that for multiplication we shall end up with...

##1^n \pmod 4 ⋅3 \pmod 4=3⋅3=1 \pmod 4.##
No. ##1\cdot 1= 1##. Not ##3##.
 
fresh_42 said:
No. ##1\cdot 1= 1##. Not ##3##.
Sorry let me get this right,
##1^n \pmod 4=3##
##3 \pmod 4=3## Correct? and ##3⋅3## in##\mod 4=1##
 
chwala said:
Sorry let me get this right,
##1^n \pmod 4=3##
##3 \pmod 4=3## Correct? and ##3⋅3## in##\mod 4=1##
No.
\begin{align*}
1 \pmod 4 &= 1\\
1\cdot 1 \pmod 4 &= 1\\
1\cdot 1 \cdot 1 \pmod 4&=1\\
\ldots &\ldots \\
1^n \pmod 4 &=1
\end{align*}

Where do you get the three from?
$$
\underbrace{\underbrace{1^n\pmod 4}_{=1}+\underbrace{3\pmod 4}_{=3}}_{=4 \pmod 4 =0}
$$
 
fresh_42 said:
No.
\begin{align*}
1 \pmod 4 &= 1\\
1\cdot 1 \pmod 4 &= 1\\
1\cdot 1 \cdot 1 \pmod 4&=1\\
\ldots &\ldots \\
1^n \pmod 4 &=1
\end{align*}

Where do you get the three from?
$$
\underbrace{\underbrace{1^n\pmod 4}_{=1}+\underbrace{3\pmod 4}_{=3}}_{=4 \pmod 4 =0}
$$
True, i meant under 'multiplication' not 'addition modulo'
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
7
Views
4K
Replies
2
Views
1K
Replies
3
Views
1K
  • · Replies 23 ·
Replies
23
Views
2K
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K