1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Prove U (Ai X Bi) [itex]\subseteq[/itex] (U Ai) X (U Bi)

  1. Oct 5, 2011 #1
    1. The problem statement, all variables and given/known data
    Suppose {Ai l i [itex]\in[/itex]I} and {Bi l i [itex]\in[/itex]I} are indexed families of sets.

    Prove that U i [itex]\in[/itex]I(Ai X Bi) [itex]\subseteq[/itex] (Ui [itex]\in[/itex]IAi) X (Ui [itex]\in[/itex]IBi)


    2. Relevant\subseteq equations
    From How to Prove It, 2nd Edition, Sec. 4.1 #11a)


    3. The attempt at a solution

    Let (x, y) be arbitrary. Suppose (x, y) [itex]\in[/itex] [itex]\bigcup[/itex]i[itex]\in[/itex]I (Ai X Bi).

    Since (x, y) [itex]\in[/itex][itex]\bigcup[/itex]i[itex]\in[/itex]I(Ai X Bi), there exists an i[itex]\in[/itex]I with x[itex]\in[/itex]Ai and y[itex]\in[/itex]Bi.

    So x [itex]\in[/itex]{xl[itex]\exists[/itex]i[itex]\in[/itex]I(x[itex]\in[/itex]Ai)} and
    y[itex]\in[/itex]{yl[itex]\exists[/itex]i[itex]\in[/itex]I(y[itex]\in[/itex]Bi)}

    Therefore, x [itex]\in[/itex][itex]\bigcup[/itex]i[itex]\in[/itex]I Ai and y[itex]\in[/itex][itex]
    \bigcup[/itex]i[itex]\in[/itex]I Bi.

    This is equivalent to ([itex]\bigcup[/itex]i[itex]\in[/itex]I Ai) X ([itex]\bigcup[/itex]i[itex]\in[/itex]I Bi). Hence, [itex]\bigcup[/itex]i[itex]\in[/itex]I (Ai X Bi)[itex]\subseteq[/itex](Ui[itex]\in[/itex]I Ai) X ([itex]\bigcup[/itex]i[itex]\in[/itex]I Bi).
    1. The problem statement, all variables and given/known data



    2. Relevant equations



    3. The attempt at a solution
     
  2. jcsd
  3. Oct 5, 2011 #2
    That looks very good!!!!

    It might be instructive to find a counterexample to the reverse inclusion...
     
  4. Oct 5, 2011 #3
    Thanks for commenting, I appreciate it. I have a very picky professor.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook