MHB Prove x^31+x^32+x^33+x^34+x^35=n has an integer solution for any integer n.

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integer
AI Thread Summary
The discussion centers on proving that the equation x_1^3+x_2^3+x_3^3+x_4^3+x_5^3=n has an integer solution for any integer n. Participants acknowledge kaliprasad for providing a clear and effective solution. There is a focus on finding a more compact closed-form solution, which is noted as an improvement. The conversation highlights the importance of clarity and conciseness in mathematical proofs. Overall, the thread emphasizes collaborative problem-solving in mathematics.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove, that the equation

\[x_1^3+x_2^3+x_3^3+x_4^3+x_5^3 = n\]

has an integer solution for any integer $n$.
 
Mathematics news on Phys.org
lfdahl said:
Prove, that the equation

\[x_1^3+x_2^3+x_3^3+x_4^3+x_5^3 = n\]

has an integer solution for any integer $n$.

We have $(t + 1)^3 + (t- 1)^3 = 2t^3 + 6t$
or $6t = (t+1)^3 + (t-1)^3 - t^3 - t^3 = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$
let us define $f(t) = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$ which is sum of of 4 cubes

the numbers are of the form
$6t = f(t)+ 0 $ sum of 5 cubes
$6t+1 = f(t) + 1^3$ sum of 5 cubes
$6t+2 = 6(t-1) + 8 = f(t-1) + 2^3$ sum of 5 cubes
$6t+3 = 6(t-4) + 27 = f(t-4)+ 3^3 $ sum of 5 cubes
$6t+4 = 6(t-10) + 64 = f(t-10) + 4^3$ sum of 5 cubes
$6t+5 = 6(t-20) + 125 = f(t-20) + 5^3$ sum of 5 cubes
as we have taken care of all cases we are done
 
kaliprasad said:
We have $(t + 1)^3 + (t- 1)^3 = 2t^3 + 6t$
or $6t = (t+1)^3 + (t-1)^3 - t^3 - t^3 = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$
let us define $f(t) = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$ which is sum of of 4 cubes

the numbers are of the form
$6t = f(t)+ 0 $ sum of 5 cubes
$6t+1 = f(t) + 1^3$ sum of 5 cubes
$6t+2 = 6(t-1) + 8 = f(t-1) + 2^3$ sum of 5 cubes
$6t+3 = 6(t-4) + 27 = f(t-4)+ 3^3 $ sum of 5 cubes
$6t+4 = 6(t-10) + 64 = f(t-10) + 4^3$ sum of 5 cubes
$6t+5 = 6(t-20) + 125 = f(t-20) + 5^3$ sum of 5 cubes
as we have taken care of all cases we are done

You really cracked the nut with a splendid solution, kaliprasad! :cool:Thanks a lot for your participation!
 
kaliprasad said:
We have $(t + 1)^3 + (t- 1)^3 = 2t^3 + 6t$
or $6t = (t+1)^3 + (t-1)^3 - t^3 - t^3 = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$
let us define $f(t) = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$ which is sum of of 4 cubes

the numbers are of the form
$6t = f(t)+ 0 $ sum of 5 cubes
$6t+1 = f(t) + 1^3$ sum of 5 cubes
$6t+2 = 6(t-1) + 8 = f(t-1) + 2^3$ sum of 5 cubes
$6t+3 = 6(t-4) + 27 = f(t-4)+ 3^3 $ sum of 5 cubes
$6t+4 = 6(t-10) + 64 = f(t-10) + 4^3$ sum of 5 cubes
$6t+5 = 6(t-20) + 125 = f(t-20) + 5^3$ sum of 5 cubes
as we have taken care of all cases we are done

better solution that is closed form ( first 3 lines copied from above)

We have $(t + 1)^3 + (t- 1)^3 = 2t^3 + 6t$
or $6t = (t+1)^3 + (t-1)^3 - t^3 - t^3 = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$
let us define $f(t) = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$ which is sum of of 4 cubes

now $n^3-n= n(n^2-1) = n(n+1)(n-1)= (n-1)n(n+1) = 6\frac{(n-1)n(n+1}{6} $ Now $\frac{(n-1)n(n+1}{6}$ is integer as $(n-1)n(n+1)$ being multiple of 3 consecutive numbers is divisible by 3! or 6

so $6t+n = n^3 + 6t -(n^3-n) = n^3 + 6(t-\frac{(n-1)n(n+1)}{6}) = n^3 + f(t-\frac{(n-1)n(n+1)}{6})$ sum of one cube and 4 cubes or sum of 5 cubes
 
kaliprasad said:
better solution that is closed form ( first 3 lines copied from above)

We have $(t + 1)^3 + (t- 1)^3 = 2t^3 + 6t$
or $6t = (t+1)^3 + (t-1)^3 - t^3 - t^3 = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$
let us define $f(t) = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$ which is sum of of 4 cubes

now $n^3-n= n(n^2-1) = n(n+1)(n-1)= (n-1)n(n+1) = 6\frac{(n-1)n(n+1}{6} $ Now $\frac{(n-1)n(n+1}{6}$ is integer as $(n-1)n(n+1)$ being multiple of 3 consecutive numbers is divisible by 3! or 6

so $6t+n = n^3 + 6t -(n^3-n) = n^3 + 6(t-\frac{(n-1)n(n+1)}{6}) = n^3 + f(t-\frac{(n-1)n(n+1)}{6})$ sum of one cube and 4 cubes or sum of 5 cubes
Thanks again, kaliprasad!Yes, the latter solution is more compact in its closed form. Nice observation!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top