MHB Prove x^31+x^32+x^33+x^34+x^35=n has an integer solution for any integer n.

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integer
AI Thread Summary
The discussion centers on proving that the equation x_1^3+x_2^3+x_3^3+x_4^3+x_5^3=n has an integer solution for any integer n. Participants acknowledge kaliprasad for providing a clear and effective solution. There is a focus on finding a more compact closed-form solution, which is noted as an improvement. The conversation highlights the importance of clarity and conciseness in mathematical proofs. Overall, the thread emphasizes collaborative problem-solving in mathematics.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove, that the equation

\[x_1^3+x_2^3+x_3^3+x_4^3+x_5^3 = n\]

has an integer solution for any integer $n$.
 
Mathematics news on Phys.org
lfdahl said:
Prove, that the equation

\[x_1^3+x_2^3+x_3^3+x_4^3+x_5^3 = n\]

has an integer solution for any integer $n$.

We have $(t + 1)^3 + (t- 1)^3 = 2t^3 + 6t$
or $6t = (t+1)^3 + (t-1)^3 - t^3 - t^3 = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$
let us define $f(t) = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$ which is sum of of 4 cubes

the numbers are of the form
$6t = f(t)+ 0 $ sum of 5 cubes
$6t+1 = f(t) + 1^3$ sum of 5 cubes
$6t+2 = 6(t-1) + 8 = f(t-1) + 2^3$ sum of 5 cubes
$6t+3 = 6(t-4) + 27 = f(t-4)+ 3^3 $ sum of 5 cubes
$6t+4 = 6(t-10) + 64 = f(t-10) + 4^3$ sum of 5 cubes
$6t+5 = 6(t-20) + 125 = f(t-20) + 5^3$ sum of 5 cubes
as we have taken care of all cases we are done
 
kaliprasad said:
We have $(t + 1)^3 + (t- 1)^3 = 2t^3 + 6t$
or $6t = (t+1)^3 + (t-1)^3 - t^3 - t^3 = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$
let us define $f(t) = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$ which is sum of of 4 cubes

the numbers are of the form
$6t = f(t)+ 0 $ sum of 5 cubes
$6t+1 = f(t) + 1^3$ sum of 5 cubes
$6t+2 = 6(t-1) + 8 = f(t-1) + 2^3$ sum of 5 cubes
$6t+3 = 6(t-4) + 27 = f(t-4)+ 3^3 $ sum of 5 cubes
$6t+4 = 6(t-10) + 64 = f(t-10) + 4^3$ sum of 5 cubes
$6t+5 = 6(t-20) + 125 = f(t-20) + 5^3$ sum of 5 cubes
as we have taken care of all cases we are done

You really cracked the nut with a splendid solution, kaliprasad! :cool:Thanks a lot for your participation!
 
kaliprasad said:
We have $(t + 1)^3 + (t- 1)^3 = 2t^3 + 6t$
or $6t = (t+1)^3 + (t-1)^3 - t^3 - t^3 = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$
let us define $f(t) = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$ which is sum of of 4 cubes

the numbers are of the form
$6t = f(t)+ 0 $ sum of 5 cubes
$6t+1 = f(t) + 1^3$ sum of 5 cubes
$6t+2 = 6(t-1) + 8 = f(t-1) + 2^3$ sum of 5 cubes
$6t+3 = 6(t-4) + 27 = f(t-4)+ 3^3 $ sum of 5 cubes
$6t+4 = 6(t-10) + 64 = f(t-10) + 4^3$ sum of 5 cubes
$6t+5 = 6(t-20) + 125 = f(t-20) + 5^3$ sum of 5 cubes
as we have taken care of all cases we are done

better solution that is closed form ( first 3 lines copied from above)

We have $(t + 1)^3 + (t- 1)^3 = 2t^3 + 6t$
or $6t = (t+1)^3 + (t-1)^3 - t^3 - t^3 = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$
let us define $f(t) = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$ which is sum of of 4 cubes

now $n^3-n= n(n^2-1) = n(n+1)(n-1)= (n-1)n(n+1) = 6\frac{(n-1)n(n+1}{6} $ Now $\frac{(n-1)n(n+1}{6}$ is integer as $(n-1)n(n+1)$ being multiple of 3 consecutive numbers is divisible by 3! or 6

so $6t+n = n^3 + 6t -(n^3-n) = n^3 + 6(t-\frac{(n-1)n(n+1)}{6}) = n^3 + f(t-\frac{(n-1)n(n+1)}{6})$ sum of one cube and 4 cubes or sum of 5 cubes
 
kaliprasad said:
better solution that is closed form ( first 3 lines copied from above)

We have $(t + 1)^3 + (t- 1)^3 = 2t^3 + 6t$
or $6t = (t+1)^3 + (t-1)^3 - t^3 - t^3 = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$
let us define $f(t) = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$ which is sum of of 4 cubes

now $n^3-n= n(n^2-1) = n(n+1)(n-1)= (n-1)n(n+1) = 6\frac{(n-1)n(n+1}{6} $ Now $\frac{(n-1)n(n+1}{6}$ is integer as $(n-1)n(n+1)$ being multiple of 3 consecutive numbers is divisible by 3! or 6

so $6t+n = n^3 + 6t -(n^3-n) = n^3 + 6(t-\frac{(n-1)n(n+1)}{6}) = n^3 + f(t-\frac{(n-1)n(n+1)}{6})$ sum of one cube and 4 cubes or sum of 5 cubes
Thanks again, kaliprasad!Yes, the latter solution is more compact in its closed form. Nice observation!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top