Prove x^31+x^32+x^33+x^34+x^35=n has an integer solution for any integer n.

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary
SUMMARY

The discussion centers on proving that the equation \(x_1^3+x_2^3+x_3^3+x_4^3+x_5^3 = n\) has an integer solution for any integer \(n\). Kaliprasad provided a compact closed-form solution that was well-received by participants. The emphasis was on the elegance and effectiveness of the solution presented, highlighting its significance in the context of integer solutions.

PREREQUISITES
  • Understanding of cubic equations and integer solutions
  • Familiarity with mathematical proofs and closed-form expressions
  • Basic knowledge of number theory
  • Experience with algebraic manipulation
NEXT STEPS
  • Research advanced techniques in number theory related to cubic equations
  • Study closed-form solutions in algebraic equations
  • Explore integer solution proofs for polynomial equations
  • Investigate the role of symmetry in algebraic expressions
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in algebraic equations and integer solutions will benefit from this discussion.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove, that the equation

\[x_1^3+x_2^3+x_3^3+x_4^3+x_5^3 = n\]

has an integer solution for any integer $n$.
 
Mathematics news on Phys.org
lfdahl said:
Prove, that the equation

\[x_1^3+x_2^3+x_3^3+x_4^3+x_5^3 = n\]

has an integer solution for any integer $n$.

We have $(t + 1)^3 + (t- 1)^3 = 2t^3 + 6t$
or $6t = (t+1)^3 + (t-1)^3 - t^3 - t^3 = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$
let us define $f(t) = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$ which is sum of of 4 cubes

the numbers are of the form
$6t = f(t)+ 0 $ sum of 5 cubes
$6t+1 = f(t) + 1^3$ sum of 5 cubes
$6t+2 = 6(t-1) + 8 = f(t-1) + 2^3$ sum of 5 cubes
$6t+3 = 6(t-4) + 27 = f(t-4)+ 3^3 $ sum of 5 cubes
$6t+4 = 6(t-10) + 64 = f(t-10) + 4^3$ sum of 5 cubes
$6t+5 = 6(t-20) + 125 = f(t-20) + 5^3$ sum of 5 cubes
as we have taken care of all cases we are done
 
kaliprasad said:
We have $(t + 1)^3 + (t- 1)^3 = 2t^3 + 6t$
or $6t = (t+1)^3 + (t-1)^3 - t^3 - t^3 = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$
let us define $f(t) = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$ which is sum of of 4 cubes

the numbers are of the form
$6t = f(t)+ 0 $ sum of 5 cubes
$6t+1 = f(t) + 1^3$ sum of 5 cubes
$6t+2 = 6(t-1) + 8 = f(t-1) + 2^3$ sum of 5 cubes
$6t+3 = 6(t-4) + 27 = f(t-4)+ 3^3 $ sum of 5 cubes
$6t+4 = 6(t-10) + 64 = f(t-10) + 4^3$ sum of 5 cubes
$6t+5 = 6(t-20) + 125 = f(t-20) + 5^3$ sum of 5 cubes
as we have taken care of all cases we are done

You really cracked the nut with a splendid solution, kaliprasad! :cool:Thanks a lot for your participation!
 
kaliprasad said:
We have $(t + 1)^3 + (t- 1)^3 = 2t^3 + 6t$
or $6t = (t+1)^3 + (t-1)^3 - t^3 - t^3 = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$
let us define $f(t) = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$ which is sum of of 4 cubes

the numbers are of the form
$6t = f(t)+ 0 $ sum of 5 cubes
$6t+1 = f(t) + 1^3$ sum of 5 cubes
$6t+2 = 6(t-1) + 8 = f(t-1) + 2^3$ sum of 5 cubes
$6t+3 = 6(t-4) + 27 = f(t-4)+ 3^3 $ sum of 5 cubes
$6t+4 = 6(t-10) + 64 = f(t-10) + 4^3$ sum of 5 cubes
$6t+5 = 6(t-20) + 125 = f(t-20) + 5^3$ sum of 5 cubes
as we have taken care of all cases we are done

better solution that is closed form ( first 3 lines copied from above)

We have $(t + 1)^3 + (t- 1)^3 = 2t^3 + 6t$
or $6t = (t+1)^3 + (t-1)^3 - t^3 - t^3 = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$
let us define $f(t) = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$ which is sum of of 4 cubes

now $n^3-n= n(n^2-1) = n(n+1)(n-1)= (n-1)n(n+1) = 6\frac{(n-1)n(n+1}{6} $ Now $\frac{(n-1)n(n+1}{6}$ is integer as $(n-1)n(n+1)$ being multiple of 3 consecutive numbers is divisible by 3! or 6

so $6t+n = n^3 + 6t -(n^3-n) = n^3 + 6(t-\frac{(n-1)n(n+1)}{6}) = n^3 + f(t-\frac{(n-1)n(n+1)}{6})$ sum of one cube and 4 cubes or sum of 5 cubes
 
kaliprasad said:
better solution that is closed form ( first 3 lines copied from above)

We have $(t + 1)^3 + (t- 1)^3 = 2t^3 + 6t$
or $6t = (t+1)^3 + (t-1)^3 - t^3 - t^3 = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$
let us define $f(t) = (t+1)^3 + (t-1)^3 + (-t)^3 + (-t)^3$ which is sum of of 4 cubes

now $n^3-n= n(n^2-1) = n(n+1)(n-1)= (n-1)n(n+1) = 6\frac{(n-1)n(n+1}{6} $ Now $\frac{(n-1)n(n+1}{6}$ is integer as $(n-1)n(n+1)$ being multiple of 3 consecutive numbers is divisible by 3! or 6

so $6t+n = n^3 + 6t -(n^3-n) = n^3 + 6(t-\frac{(n-1)n(n+1)}{6}) = n^3 + f(t-\frac{(n-1)n(n+1)}{6})$ sum of one cube and 4 cubes or sum of 5 cubes
Thanks again, kaliprasad!Yes, the latter solution is more compact in its closed form. Nice observation!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K