MHB Prove Z7 is a Ring Under + and x Operations

  • Thread starter Thread starter Zoey93
  • Start date Start date
  • Tags Tags
    Operations Ring
Zoey93
Messages
15
Reaction score
0
Hey there,

I need some help with this assignment:

Use the definition for a ring to prove that Z7 is a ring under the operations + and x as defined as follows: [a]7+7 = [a+b]7 and [a]7 x 7 = [a x b]7

1. state each step of your proof
2. provide written justification for each step.But First I must use the six definitions of a ring to prove that z7 satisfies them.
A ring is a set R equipped with two binary operations,1 here denoted by + and *, that have the following properties.

1. (a + b) + c = a + (b + c) for all a, b and c in R (addition is associative).
2. a + b = b + a for all a and b in R (addition is commutative).
3. There is an element 0 ∈ R such that 0 + x = x + 0 = x for all x ∈ R.
4. For each element x ∈ R, there is a unique element y ∈ R such that x + y = y + x = 0. (We denote y by −x.)
5. (a * b) * c = a * (b * c) for all a, b, and c in R (multiplication is associative).
6. (The distributive law) a * (b + c) = a * b + a * c and (b + c)* a = b * a + c * a for all a, b, and c in R.

This is what I have so far:

1. Additive Associativity Property
[a+b]7+[c]7=[a]7+[b+c]7
~[a+b]7+[c]7=[a]7+7+[c]7 Given
~[a]7+7+[c]7=[a]7+(7+[c]7) Addition of Integers is Associative
~[a]7+(7+[c]7)=[a]7+[b+c]7 Given

2. Additive Commutativity Property
[a]7+7=7+[a]7
~[a]7+7=[a+b]7 Given
~[a+b]7=[b+a]7 Addition of Integers is Commutative
~[b+a]7=7+[a]7 Given
 
Physics news on Phys.org
I find your proof of associativity hard to follow. To me, it should run like this:

$[a]_7 + (_7 + [c]_7) = [a]_7 + [b+c]_7$ (by definition of addition in $\Bbb Z_7$)

$= [a + (b + c)]_7$ (by definition of addition in $\Bbb Z_7$, again)

$= [(a+b) + c]_7$ (by the associativity of addition in the integers)

$= [a+b]_7 + [c]_7$ (by definition of addition in $\Bbb Z_7$)

$= ([a]_7 + _7) + [c]_7$ (by definition of addition in $\Bbb Z_7$), QED.

That is, at some point all of $a,b,c$ should be "inside the brackets".

Your proof of commutativity is better, line 3 is the critical step.
 
Hello Deveno,

Thank you for your help. So I finished the assignment but there are a few things I need to fix. I need help correcting number 4, my professor said that my statement is incorrect. Also, I need help correcting part B the zero divisor, my professor said that it was incorrect. Here is the link to my assignment.

https://www.dropbox.com/s/9x2mows1fb5l7a7/Task 2 AA zk.docx?dl=0
 
For number 4, you need to show that for any $[a]_7 \in \Bbb Z_7$, there exists $_7 \in \Bbb Z_7$ such that:

$[a]_7 + _7 = _7 + [a]_7 = [0]_7$, and that such a $_7$ is unique (that is, $b$ is unique up to an integer multiple of $7$).

While not strictly necessary, it is usual to consider only $a \in \{0,1,2,3,4,5,6\}$, since any other integer $a$ is equivalent modulo $7$ to one of these.

So it then falls upon you to find a suitable $b \in \Bbb Z$ that works.

You are correct that $b = -a$ would work, but the usual choice is $b = 7-a$ which guarantees that $b \in \{1,2,3,4,5,6,7\}$.

This actually breaks down into "two cases" $a = 0$ (in which case we prefer $[0]_7$ rather than $[7]_7$, although these are equal since:

$7 - 0 = 7 = 1\cdot 7 \in 7\Bbb Z$), and $a \neq 0$, in which case $b \in \{1,2,3,4,5,6\}$).

It follows from the identity property of $[0]_7$ that $[0]_7 + [0]_7 = [0+0]_7 = [0]_7$, and that $[0]_7$ is the unique congruence class that has this property for $[0]_7$, that is:

$-[0]_7 = [0]_7$.

If $a \neq 0$, it follows that $[a]_7 + [7-a]_7 = [a+(7-a)]_7 = [a+(-a+7)]_7 = [(a+-a)+7]_7 = [0+7]_7 = [7]_7 = [0]_7$.

Thus for any $a \in \{0,1,2,3,4,5,6\}$, there is at least one $b \in \{0,1,2,3,4,5,6\}$, such that $[a]_7 + _7 = [0]_7$.

The equation $_7 + [a]_7 = [0]_7$ is a direct result of $+$ being commutative in $\Bbb Z_7$. However, we're not quite done yet. We still have to show that if $b \in \{0,1,2,3,4,5,6\}$ is such that $[a]_7 + _7 = [0]_7$, that no other $c \neq b \in \{0,1,2,3,4,5,6\}$ has this property.

Assume, for the sake of showing a contradiction, that such a $c \neq b$ exists.

We have $[a+b]_7 = [a]_7 + _7 = [a]_7 + [c]_7 = [a+c]_7$, that is:

$a+b - (a+c) = 7k$, for some integer $k$. Thus:

$b - c = 7k$. Since both $b,c \in \{0,1,2,3,4,5,6\}$, we have $|b - c| < 7$. Hence $k = 0$, contradiction.

The set $\{0,1,2,3,4,5,6\}$ is called a set of representatives for $\Bbb Z_7$, and is handy for showing uniqueness as we have done here. That is:

$[a]_7$ does not uniquely determine $a$, but it *does* if we require $a \in \{0,1,2,3,4,5,6\}$.

I'm not sure of your professors' issue for number 4, but I suspect it is that you argued using $[-a]_7$, instead of finding $-([a]_7)$.

***********************

With regards to part B, you have made a mistake in arguing:

since $7$ is prime, neither $a$ nor $b$ divide $7$. This is not true, as either $a$ or $b$ might be $1$, which *does* divide $7$.

It is easier to make the reverse argument, that if $[a]_7\cdot_7 = [0]_7$, then either $[a]_7 = [0]_7$ or $_7 =[0]_7$ (or both). To make this argument, assume that $[a]_7 \neq [0]_7$, and show that we *must* have $_7 = [0]_7$.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top