Proving a wave satisfies the Helmholtz equation

Click For Summary
To prove that the complex amplitude U satisfies the Helmholtz equation, the wave function is expressed as Ψ(x, t) = U(x, y, z)e^{-iωt}. The main challenge arises when substituting U into the equation, as the k component complicates the derivation. Attempts to manipulate U in relation to Ψ did not yield the expected result of zero, leading to confusion about the appropriate differential equation for the wave. The discussion highlights the need for clarity on how to approach the relationship between U and the Helmholtz equation. Understanding the implications of the k term is crucial for solving the problem effectively.
Matt Chu
Messages
16
Reaction score
0

Homework Statement



Consider a harmonic wave given by

$$\Psi (x, t) = U(x, y, z) e^{-i \omega t}$$

where ##U(x, y, z)## is called the complex amplitude. Show that ##U## satisfies the Helmholtz equation:

$$ (\nabla + k^2) U (x, y, z) = 0 $$

Homework Equations



Everything important already in the problem.

The Attempt at a Solution


[/B]
The first thing I attempted to do was to express ##U## in terms of ##\Psi## and ##e^{-i \omega t}##. This led me to a long set of derivations that in no way gave me anything remotely close to zero. I'm confused as to how to solve this, as the ##k## component of the Helmholtz equation seems to be problematic; it seems the only way to prove that the whole expression equals zero would be if ##U = 0##.
 
Physics news on Phys.org
What differential equation should the wave satisfy?
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
8
Views
1K
Replies
2
Views
1K