Limit Definition of Derivative as n Approaches Infinity

  • Thread starter Thread starter songoku
  • Start date Start date
  • Tags Tags
    Limit Proof
Click For Summary
The discussion focuses on understanding the limit definition of a derivative as n approaches infinity, specifically how to relate this to the standard definitions of derivatives. Participants explore the idea that as sequences \(b_n\) and \(a_n\) converge to \(x_0\), the limit of the difference quotient approaches the derivative \(f'(x_0)\). A key point is the use of the \(\epsilon-\delta\) definition of limits to justify the steps in the proof. The conversation also highlights the importance of ensuring that the derivatives at \(a_n\) and \(b_n\) exist and converge correctly to \(f'(x_0)\). Ultimately, the group reaches a consensus on the necessity of careful algebraic manipulation to establish the desired limit relationship.
songoku
Messages
2,497
Reaction score
400
Homework Statement
Please see below
Relevant Equations
Limit
Sequence Theorem
Derivative from first principle
1664335070591.png


##f'(x_0)## is defined as:
$$f'(x_0)=\lim_{h \rightarrow 0} \frac{f(x_0+h)-f(x_0)}{h}$$
or
$$f'(x_0)=\lim_{x \rightarrow x_0} \frac{f(x)-f(x_0)}{x-x_0}$$

I can imagine that as ##n \rightarrow \infty## the value of ##f(b_n)## and ##f(a_n)## will approach ##f(x_0)## so the value of the limit will be like tangent to graph ##f(x)## at point ##x_0##

But I don't know how to do it mathematically. The definition I know for derivative is the limit approaches 0 while the question is n approaches infinity. How to relate the question to the definition?

Thanks
 
Physics news on Phys.org
How about
b_n-a_n:=h_n
h_n\rightarrow 0
 
  • Like
Likes songoku
anuttarasammyak said:
How about
b_n-a_n:=h_n
h_n\rightarrow 0
I think I can solve the question using this hint.

Thank you very much anuttarasammyak
 
songoku said:
Homework Statement:: Please see below
Relevant Equations:: Limit
Sequence Theorem
Derivative from first principle

View attachment 314745

##f'(x_0)## is defined as:
$$f'(x_0)=\lim_{h \rightarrow 0} \frac{f(x_0+h)-f(x_0)}{h}$$
or
$$f'(x_0)=\lim_{x \rightarrow x_0} \frac{f(x)-f(x_0)}{x-x_0}$$

I can imagine that as ##n \rightarrow \infty## the value of ##f(b_n)## and ##f(a_n)## will approach ##f(x_0)## so the value of the limit will be like tangent to graph ##f(x)## at point ##x_0##

But I don't know how to do it mathematically. The definition I know for derivative is the limit approaches 0 while the question is n approaches infinity. How to relate the question to the definition?

Thanks
Use ##\epsilon-\delta## to relate the two?
 
PeroK said:
Use ##\epsilon-\delta## to relate the two?
Sorry I don't understand the hint.

I followed hint in post#2 and this is what I did:
Let ##h_n=b_n -a_n## and as ##n \rightarrow \infty, h_n \rightarrow 0##
$$\lim_{n \rightarrow \infty} \frac{f(b_n)-f(a_n)}{b_n-a_n}$$
$$=\lim_{h_n \rightarrow 0} \frac{f(a_n+h_n)-f(a_n)}{h_n}$$

The expression is equal to ##f'(a_n)## and ##f'(a_n)## is equal to ##f'(x_0)##

By ##\epsilon-\delta##, do you mean using ##\epsilon-\delta## definition of limit?

Thanks
 
songoku said:
Sorry I don't understand the hint.

I followed hint in post#2 and this is what I did:
Let ##h_n=b_n -a_n## and as ##n \rightarrow \infty, h_n \rightarrow 0##
$$\lim_{n \rightarrow \infty} \frac{f(b_n)-f(a_n)}{b_n-a_n}$$
$$=\lim_{h_n \rightarrow 0} \frac{f(a_n+h_n)-f(a_n)}{h_n}$$

The expression is equal to ##f'(a_n)## and ##f'(a_n)## is equal to ##f'(x_0)##
That needs to be proved.
songoku said:
By ##\epsilon-\delta##, do you mean using ##\epsilon-\delta## definition of limit?

Thanks
Yes. What else could that mean?
 
PeroK said:
That needs to be proved.
You mean I have to prove ##f'(a_n)=f'(x_0)##?

PeroK said:
Yes. What else could that mean?
The definition is something that is not taught in class so maybe we are not expected to use that but I will try first and see what I can get from it

Thanks
 
songoku said:
You mean I have to prove ##f'(a_n)=f'(x_0)##?
That statement is clearly not true. You don't even know that for all ##n## ##f'(a_n)## exists.
songoku said:
The definition is something that is not taught in class so maybe we are not expected to use that but I will try first and see what I can get from it

Thanks
Then what definition of a limit are you using?
 
  • Like
Likes songoku
anuttarasammyak said:
How about
b_n-a_n:=h_n
h_n\rightarrow 0
I'm not convinced this helps. We only know the derivative exists at ##x_0##, which is a key point.
 
  • #10
@songoku I think you need to expand the expression and pull out a constant term of ##f'(x_0)## and show that what's left converges to zero. There's quite a lot of algebra.
 
  • Like
Likes songoku
  • #11
If f is differentiable at x_0 then for any h, <br /> f(x_0 + h) = f(x_0) + hf&#039;(x_0) + E(h) where \lim_{h \to 0} \frac{E(h)}{h} = 0. If you set h_n = a_n - x_0 and k_n = b_n - x_0 then the algebra is easier, although I did have to resort to proof by cases depending on whether |h_n/k_n| remains bounded as n \to \infty.
 
Last edited:
  • Like
Likes songoku
  • #12
PeroK said:
I'm not convinced this helps. We only know the derivative exists at x0, which is a key point.
Let us see it.
\lim_{n \rightarrow \infty} \frac{f(a_n+h_n)-f(a_n)}{h_n}
If we make it
=\lim_{n\rightarrow \infty} \frac{f(x_0+h_n)-f(x_0)}{h_n}
It works. Can we make it so ?
 
  • #13
anuttarasammyak said:
Let us see it.
\lim_{n \rightarrow \infty} \frac{f(a_n+h_n)-f(a_n)}{h_n}
If we make it
=\lim_{n\rightarrow \infty} \frac{f(x_0+h_n)-f(x_0)}{h_n}
It works. Can we make it so ?
Okay, but you still have to justify that step.
 
  • #14
\lim_{n\rightarrow \infty}\frac{f(b_n)-f(a_n)}{b_n-a_n}=\lim_{n\rightarrow \infty}\frac{[f(\beta_n+x_0)-f(x_0)]+[f(x_0)-f(x_0-\alpha_n)]}{\beta_n+\alpha_n}
where
\beta_n=b_n-x_0
\alpha_n=x_0-a_n, decomposing ##h_n## before. We know
\lim_{n\rightarrow \infty}\frac{f(\beta_n+x_0)-f(x_0)}{\beta_n}=\lim_{n\rightarrow \infty}\frac{f(x_0)-f(x_0-\alpha_n)}{\alpha_n}=f&#039;(x_0)
 
Last edited:
  • #15
anuttarasammyak said:
\lim_{n\rightarrow \infty}\frac{f(b_n)-f(a_n)}{b_n-a_n}=\lim_{n\rightarrow \infty}\frac{[f(\beta_n+x_0)-f(x_0)]+[f(x_0)-f(x_0-\alpha_n)]}{\beta_n+\alpha_n}
where
\beta_n=b_n-x_0
\alpha_n=x_0-a_n, decomposing ##h_n## before. We know
\lim_{n\rightarrow \infty}\frac{f(\beta_n+x_0)-f(x_0)}{\beta_n}=\lim_{n\rightarrow \infty}\frac{f(x_0)-f(x_0-\alpha_n)}{\alpha_n}=f&#039;(x_0)
Two things. You have a problem with the denominator and this isn't your homework.
 
  • #16
To give a big hint. The first step here is to rewrite the expression as:
$$\frac{f(b_n) - f(a_n)}{b_n - a_n} = \frac{f(b_n) - f(x_0)}{b_n - a_n} + \frac{f(x_0) - f(a_n)}{b_n - a_n}$$$$ = \frac{f(b_n) - f(x_0)}{b_n - x_0}\bigg [\frac{b_n - x_0}{b_n - a_n} \bigg ] + \frac{f(x_0) - f(a_n)}{x_0 - a_n} \bigg [\frac{x_0 - a_n}{b_n - a_n} \bigg ]$$And then to introduce the quantity ##f'(x_0)## ...
 
  • Like
Likes songoku and FactChecker
  • #17
PeroK said:
Two things. You have a problem with the denominator and this isn't your homework.
Though this is not my homework let me investigate the problem you find. With ## \lim_{n\rightarrow \infty} ##, may we equate the fractions as
\frac{f(\beta_n+x_0)-f(x_0)}{\beta_n}=\frac{f(x_0)-f(x_0-\alpha_n)}{\alpha_n}=\frac{[f(\beta_n+x_0)-f(x_0)]+[f(x_0)-f(x_0-\alpha_n)]}{\beta_n+\alpha_n}?[EDIT] For any n, may we say
\min \{\frac{f(\beta_n+x_0)-f(x_0)}{\beta_n},\frac{f(x_0)-f(x_0-\alpha_n)}{\alpha_n}\}
\leq\frac{[f(\beta_n+x_0)-f(x_0)]+[f(x_0)-f(x_0-\alpha_n)]}{\beta_n+\alpha_n}\leq
\max \{\frac{f(\beta_n+x_0)-f(x_0)}{\beta_n},\frac{f(x_0)-f(x_0-\alpha_n)}{\alpha_n}\}?
 
Last edited:
  • #18
PeroK said:
That statement is clearly not true. You don't even know that for all ##n## ##f'(a_n)## exists.
Ah yes, I see.
PeroK said:
Then what definition of a limit are you using?
I am not sure. The teacher said: "If we want to prove limit as x approaches 5 of (x + 1) is 6, then we need to use precise definition of limit but I won't cover that"

So maybe I am not using any definition of limit right now, I am not really sure.

PeroK said:
To give a big hint. The first step here is to rewrite the expression as:
$$\frac{f(b_n) - f(a_n)}{b_n - a_n} = \frac{f(b_n) - f(x_0)}{b_n - a_n} + \frac{f(x_0) - f(a_n)}{b_n - a_n}$$$$ = \frac{f(b_n) - f(x_0)}{b_n - x_0}\bigg [\frac{b_n - x_0}{b_n - a_n} \bigg ] + \frac{f(x_0) - f(a_n)}{x_0 - a_n} \bigg [\frac{x_0 - a_n}{b_n - a_n} \bigg ]$$And then to introduce the quantity ##f'(x_0)## ...
I understand this hint
 
  • #19
PeroK said:
To give a big hint. The first step here is to rewrite the expression as:
$$\frac{f(b_n) - f(a_n)}{b_n - a_n} = \frac{f(b_n) - f(x_0)}{b_n - a_n} + \frac{f(x_0) - f(a_n)}{b_n - a_n}$$$$ = \frac{f(b_n) - f(x_0)}{b_n - x_0}\bigg [\frac{b_n - x_0}{b_n - a_n} \bigg ] + \frac{f(x_0) - f(a_n)}{x_0 - a_n} \bigg [\frac{x_0 - a_n}{b_n - a_n} \bigg ]$$And then to introduce the quantity ##f'(x_0)## ...
As in my post #2 you leave ##b_n-a_n## in the formula. Now I think it was not a good strategy because of independent convergence of ##a_n \rightarrow x_0 ## and ##b_n \rightarrow x_0 ##.
The first term of RHS in the limit is
f&#039;(x)\lim_{n \rightarrow \infty}(1+\frac{x_0-a_n}{b_n-x_0})^{-1}
The second term of RHS in the limit is
f&#039;(x)\lim_{n \rightarrow \infty}(1+\frac{b_n-x_0}{x_0-a_n})^{-1}=f&#039;(x)(1-\lim_{n \rightarrow \infty}(1+\frac{x_0-a_n}{b_n-x_0})^{-1})
They cancel to bring f'(x) but I wonder according to independent convergence of ##a_n \rightarrow x_0 ## and ##b_n \rightarrow x_0 ##, though we know that the value for any n is between 0 and 1 anyway, I am not sure there exist the limit value for infinite n. Does the cancellation work even when there exist the no limit value ? I prefer a discussion without comparing the convergences of ##a_n## and ##b_n## .

[EDIT] Now I understand even if there exists no limit, as it is bounded between 0 and 1, we can get the result. Thanks for teachings guys.
 
Last edited:
  • #20
anuttarasammyak said:
The first term of RHS in the limit is
f&#039;(x)\lim_{n \rightarrow \infty}(1+\frac{x_0-a_n}{b_n-x_0})^{-1}
The first term of RHS in the limit is
f&#039;(x)\lim_{n \rightarrow \infty}(1+\frac{b_n-x_0}{x_0-a_n})^{-1}
That was not my idea.
 
  • Like
Likes anuttarasammyak
  • #21
Thank you very much anuttarasammyak, PeroK, pasmith