MHB Proving an absolute value inequality

Click For Summary
The discussion focuses on proving the inequality if |a| ≤ b, then -b ≤ a ≤ b, for real numbers a and b. The definition of absolute value is clarified, distinguishing cases where a is non-negative and negative. In Case I, it is noted that if a ≥ 0, then |a| = a, leading to a ≤ b, while in Case II, if a < 0, then |a| = -a, resulting in -b < 0 ≤ a. Participants express confusion regarding the logical structure of the proof, particularly the incorrect assertion that a > b in Case I. The need for a clearer, more coherent proof is emphasized.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
If $\left| a \right| \le b$, then $-b\le a\le b$.
Let $a,b \in\Bbb{R}$ The definition of the absolute value is $ \left| x \right|= x, x\ge 0$ and $\left| x \right|=-x, x< 0$, where x is some real number.

Case I:$a\ge 0$, $\left| a \right|=a>b$

Case II: a<0, $\left| a \right|=-a<b$the solution is $-b<0\le a\le b$

I work on a number line. yet I still have trouble with the proof.
 
Mathematics news on Phys.org
At which point of the proof are you facing difficulties?
 
Well, I, for one, have trouble understanding the proof since I don't follow its logical structure, and not just because $a>b$ should be $a\le b$ in case I. Maybe someone can write a more coherent proof.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K