Proving convergence and divergence of series

Click For Summary

Homework Help Overview

The discussion revolves around proving the convergence and divergence of the series defined by the terms ##a_n = \frac{1}{n(\ln n)^p}## and ##b_n = \frac{1}{(n \ln n)^p}##. Participants explore the properties of p-series and their behavior under various conditions of the parameter p.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the application of the comparison test and the implications of p-series convergence criteria. Questions arise regarding the treatment of the parameter p, particularly in the range ##0 < p \leq 1##. Some suggest alternative methods such as the ratio test and the Cauchy Condensation Test to analyze convergence.

Discussion Status

The discussion is active, with various methods being proposed to analyze the convergence of the series. Participants are questioning the assumptions made about the parameter p and exploring different mathematical tools to approach the problem.

Contextual Notes

There is a noted ambiguity regarding the treatment of the parameter p, especially in the interval ##0 < p \leq 1##, which has not been fully addressed in the original post.

member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this problem,
1718749022171.png

Let ##a_n = \frac{1}{n(\ln n)^p}##

##b_n = \frac{1}{(n \ln n)^p} = \frac{1}{(n^*)^p}##

We know that ##\sum_{2 \ln 2}^{\infty} \frac{1}{(n^*)^p}## is a p-series with ##n^* = n\ln n##, ##n^* \in \mathbf{R}##

Assume p-series stilll has the same property when ##n^* \in \mathbb{R}## instead of ##n \in \mathbb{N}##

This implies tht P-series is convergent when ##p > 1## and divergent when ##p \leq 1##

However, if we consider ##n^* = n \ln n## ##n^* \in \mathbb{N}## then ##\frac{1}{n (\ln n)^p} \leq \frac{1}{(n^*)^p}## when ##n \geq N##

Thus since ##\sum_{n = 2}^{\infty} \frac{1}{(n^*)^p}## converges for ##p > 1## then ##\sum_{n = 2}^{\infty} \frac{1}{n(\ln n)^p}## converges for ##p > 1## by comparison test

Since ##\sum_{n = 2}^{\infty} \frac{1}{(n^*)^p}## diverges for ##p \leq 1## then ##\sum_{n = 2}^{\infty} \frac{1}{n(\ln n)^p}## this implies that the other series diverges for ##p \leq 0## by comparison test

However, does anybody please know whether my proof is correct? I’m also not sure why author did not consider ##0 < p \leq 1##.

Thanks!
 
Physics news on Phys.org
For the first part, notice too, if ##p<0##, you can move the denominator to the top and consider more " standard" methods like the ratio test. But valid question on ##p \in (0,1)##. Let me think it through.
 
  • Love
Likes   Reactions: member 731016
Hello! Another quite useful tool to prove this is the Cauchy Condensation Test (##\sum_{k=1}^{\infty}a_k## is convergent if and only if ##\sum_{k=0}^{\infty}2^ka_{2^k}## is convergent). In this example, ##a_k=\frac{1}{k(\ln k)^p}##. Then, $$2^ka_{2^k}=2^k\frac{1}{2^k\left(\ln 2^k\right)^p}=\frac{1}{\left(\ln 2\right)^p}\frac{1}{k^p}$$ and
$$\sum_{k=2}^{\infty}2^ka_{2^k}=\frac{1}{\left(\ln 2\right)^p}\sum_{k=2}^{\infty}\frac{1}{k^p}.$$
Now, the problem is reduced to the convergence of ##\sum_{k=2}^{\infty}\frac{1}{k^p}##. For what values of ##p## does this last series converge? The Cauchy condensation test can give an answer to this question as well. Now, if ##b_k=\frac{1}{k^p}##,
$$2^kb_{2^k}=2^k\frac{1}{\left(2^k\right)^p}=\frac{1}{\left(2^k\right)^{p-1}}=\frac{1}{\left(2^{p-1}\right)^k}.$$
Now, the series ##\sum_{k=2}^{\infty}\frac{1}{\left(2^{p-1}\right)^k}## is a geometric series, hence it converges if and only if ##\frac{1}{2^{p-1}}<1## which means that it converges if ##p> 1## and diverges if ##\frac{1}{2^{p-1}}>1##, hence, when ##p\leq 1##.
I hope that this method gives a new perspective to your problem and ultimately helps.
 
  • Love
Likes   Reactions: member 731016
The intended method is the integral comparison test: if the a_n are positive and strictly decreasing for n \geq n_0, and f: [n_0, \infty) \to [0, \infty) is strictly decreasing such that f(n) = a_n for all n \geq n_0, then \sum_{n=n_0}^\infty a_n converges if and only if \int_{n_0}^\infty f(x)\,dx converges.
 
  • Love
Likes   Reactions: member 731016

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
14
Views
2K