MHB Proving Convex Set Properties to Showing the Convexity of X-Y

Click For Summary
The discussion focuses on proving that the set difference of two convex sets, defined as Z = {x - y | x ∈ X, y ∈ Y}, is also convex. The initial approach involved assuming a point r in the segment between two points p and q in Z and attempting to show r is not in Z, which was deemed unnecessary. Instead, it was clarified that one can directly express r as a combination of points from X and Y, confirming that r remains in Z. The participants emphasized that the convexity of Z can be established without needing to assume X and Y are vector spaces, as their convexity suffices for the proof. The conversation concluded with a reminder that the properties of convex sets alone are adequate for this proof.
rputra
Messages
35
Reaction score
0
I need help on this problem:

If $X$ and $Y$ are convex sets, show that $X-Y = Z = \{x-y \mid x \in X, y \in Y\}$ is also convex.

Here are the steps I have gone so far:

Let $p \in Z$ such that $p = x_1 - y_1$, and let $q \in Z$ such that $q = x_2 - y_2$. Assume that $r$ lays in the segment line of $\overline {pq}$ so that there exists $k$ and $k'$, with $k, k' \geq 0$ and $k+k' = 1$, such that $r = kp + (1-k)q$. By way of contradiction, we are going to show that $r \notin Z$, thus implying that $Z$ is indeed concave.

Then,
$$\begin{align}
r &= kp + (1-k)q \\
&= k(x_1 - y_1) + (1-k)(x_2 - y_2) \\
&= x_1k - y_1k + x_2 - y_2 - x_2k + y_2k \\
&= \ldots \\
&= \ldots
\end{align}$$

But then I do not how to follow up. Any help or hint would be very much appreciated. Thank you for your time.
 
Last edited:
Physics news on Phys.org
Tarrant said:
I need help on this problem:

If $X$ and $Y$ are convex sets, show that $X-Y = Z = \{x-y \mid x \in X, y \in Y\}$ is also convex.

Here are the steps I have gone so far:

Let $p \in Z$ such that $p = x_1 - y_1$, and let $q \in Z$ such that $q = x_2 - y_2$. Assume that $r$ lays in the segment line of $\overline {pq}$ so that there exists $k$ and $k'$, with $k, k' \geq 0$ and $k+k' = 1$, such that $r = kp + (1-k)q$. By way of contradiction, we are going to show that $r \notin Z$, thus implying that $Z$ is indeed concave.

Then,
$$\begin{align}
r &= kp + (1-k)q \\
&= k(x_1 - y_1) + (1-k)(x_2 - y_2) \\
&= x_1k - y_1k + x_2 - y_2 - x_2k + y_2k \\
&= \ldots \\
&= \ldots
\end{align}$$

But then I do not how to follow up. Any help or hint would be very much appreciated. Thank you for your time.

I am not sure why are you invoking the contradiction approach. It's rather straightforward. And you have to show that $Z$ is convex and not concave!

Here is what you do

$$\begin{align}
r &= kp + (1-k)q \\
&= k(x_1 - y_1) + (1-k)(x_2 - y_2) \\
&= [kx_1 +(1-k)x_2 ]- [ky_1+ (1-k)y_2] \\
&= x-y
\end{align}$$
where $x=kx_1+(1-k)x_2$ and $y=ky_1+(1-k)y_2$. Note that $x\in X$ and $y\in Y$ since $X$ and $Y$ are convex. Thus $kp+(1-k)q$ lies in $X-Z=Y$, showing that $Z$ is convex.
 
caffeinemachine said:
I am not sure why are you invoking the contradiction approach. It's rather straightforward. And you have to show that $Z$ is convex and not concave!

Here is what you do

$$\begin{align}
r &= kp + (1-k)q \\
&= k(x_1 - y_1) + (1-k)(x_2 - y_2) \\
&= [kx_1 +(1-k)x_2 ]- [ky_1+ (1-k)y_2] \\
&= x-y
\end{align}$$
where $x=kx_1+(1-k)x_2$ and $y=ky_1+(1-k)y_2$. Note that $x\in X$ and $y\in Y$ since $X$ and $Y$ are convex. Thus $kp+(1-k)q$ lies in $X-Z=Y$, showing that $Z$ is convex.

My bad, my bad! Sorry for the dumb opinion. Thank you for pointing that out! Just to let you know that I forgot to mention that $X$ and $Y$ are in vector space. (Or perhaps you have already known it by implication?) That means that $X$ and $Y$ are closed under addition and scalar multiplication, am I correct in these? Thanks again and again for your time and effort.
 
Tarrant said:
My bad, my bad! Sorry for the dumb opinion. Thank you for pointing that out! Just to let you know that I forgot to mention that $X$ and $Y$ are in vector space. (Or perhaps you have already known it by implication?) That means that $X$ and $Y$ are closed under addition and scalar multiplication, am I correct in these? Thanks again and again for your time and effort.
The implication that $X-Y$ is convex follows from the convexity of $X$ and $Y$ alone. We do not need to assume that $X$ and $Y$ are vector spaces. If something is confusing you then you may start from the beginning in the next post.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K