MHB Proving Definite Integral: \(\ln x/\sqrt{x(1-x^2)}\)

Click For Summary
The integral \(\int_0^1 \frac{\ln x}{\sqrt{x(1-x^2)}}dx\) is proven to equal \(-\frac{\sqrt{2\pi}}{8} \left(\Gamma\left(\frac{1}{4} \right)\right)^2\). The proof involves substituting \(t=x^c\) in the integral and applying properties of the Gamma function. By setting specific values for \(a\), \(b\), and \(c\), the integral is transformed and evaluated using known results. The reflection rule of the Gamma function and properties of the digamma function are utilized to simplify the expression. This leads to the final result confirming the original claim about the integral's value.
sbhatnagar
Messages
87
Reaction score
0
Prove that

\[\int_0^1 \frac{\ln x}{\sqrt{x(1-x^2)}}dx=-\frac{\sqrt{2\pi}}{8} \left(\Gamma\left(\frac{1}{4} \right)\right)^2 \]

\(\Gamma (x)\) is the Gamma Function.
 
Mathematics news on Phys.org
Here's a Hint.:)

Differentiate the identity,

\[ \int_0^1 x^{a-1}(1-x)^{b-1}dx=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}\]

with respect to the parameter \(a\).

\[\int_0^1 x^{a-1}(1-x)^{b-1}\ln x \ dx = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} \left( \psi(a)-\psi(a+b)\right)\]

where \(\psi(x)\) is the Digamma Function.
 
I will post the solution now. In the integral,

\[ I=\int_0^1 x^{a-1}(1-x^c)^{b-1}\ln x \ dx\]

substitute \(t=x^c\), and obtain

\[ I=\frac{1}{c^2}\int_0^1 t^{\frac{a}{c}-1}(1-t)^{b-1}\ln t \ dt\]

This integral can be evaluated using the result obtained in my previous post.

\[I=\frac{\Gamma(a/c) \Gamma(b)}{c^2\Gamma(a/c +b)}\left( \psi(a/c)-\psi(a/c+b)\right)\]

If we put \(a=1/2,b=1/2,c=2\), we will obtain

\[\int_0^1\frac{\ln x}{\sqrt{x(1-x^2)}}=\frac{\Gamma(1/4)\Gamma(1/2)}{4\Gamma (3/4)}\left( \psi(1/4)-\psi(3/4)\right)\]

From the reflection rule of gamma function, we have

\(\displaystyle \Gamma \left(\frac{3}{4} \right)=\frac{\pi}{\sin(\frac{\pi}{4})\Gamma(\frac{1}{4})}=\frac{\pi\sqrt{2}}{\Gamma(\frac{1}{4})}\)

Also, \(\psi(1-x)-\psi(x)=\pi\cot \pi x\). Therefore

\(\psi(1/4)-\psi(3/4)=\pi \cot(3\pi/ 4)=-\pi\)

From all these we obtain

\[ \int_0^1 \frac{\ln x}{\sqrt{x(1-x^2)}}=-\frac{\sqrt{2\pi}}{8}\left( \Gamma \left ( \frac{1}{4}\right)\right)^2\]
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
2K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K