Proving geometric sum for complex numbers

Click For Summary
SUMMARY

The discussion focuses on proving the geometric sum for complex numbers, specifically the expression for the sum of the series from N=1, which is given by \sum_{k=0}^1 z_k = 1 + z. The goal is to demonstrate that 1 + z = \frac{1 - z^2}{1 - z}. Participants suggest factoring the numerator and using the identity (1 - z)\sum_{n=0}^N z^n = 1 - z^{N+1} as effective strategies to simplify the proof. The problem was ultimately resolved by factoring and recognizing the relationship between the terms.

PREREQUISITES
  • Understanding of complex numbers and their arithmetic
  • Familiarity with geometric series and summation notation
  • Knowledge of mathematical induction
  • Ability to manipulate algebraic expressions involving complex variables
NEXT STEPS
  • Study the properties of geometric series in complex analysis
  • Learn about mathematical induction techniques in proofs
  • Explore factoring techniques for algebraic expressions
  • Investigate the implications of Euler's formula in complex number proofs
USEFUL FOR

Mathematicians, students studying complex analysis, and educators looking to enhance their understanding of geometric series and proof techniques involving complex numbers.

CGandC
Messages
326
Reaction score
34
Homework Statement
Prove that for every complex number ## z \neq 1 ## it occurs that ## \sum_{n=0}^{N} z^{n}=\frac{1-z^{N+1}}{1-z} ##
Relevant Equations
## z= a+ib , z = r e^{i \theta} ##
I went ahead and tried to prove by induction but I got stuck at the base case for ## N =1 ## ( in my course we don't define ## 0 ## as natural so that's why I started from ## N = 1 ## ) which gives ## \sum_{k=0}^1 z_k = 1 + z = 1+ a + ib ## .
I need to show that this is equal to ## \frac{1- z^2 }{1-z} ## , i.e. ## 1+z = \frac{1- z^2 }{1-z} ##.
So I went straight ahead and did as follows:
## \frac{ 1-(a+ib)^2 }{1-(a+ib) } = \frac{ 1-(a+ib)^2 }{1-a - ib) } \cdot \frac{1- a + ib}{ 1- a + ib } = \frac{ a^{3}+i a^{2} b-a^{2}+a b^{2}-2 i a b-a+i b^{3}+b^{2}+i b+1 }{a^{2}-2 a+b^{2}+1} ## but I don't really know how to continue from here.

I also tried using ## z = r e^{i \theta } ##:
## \frac{ 1 - r^2 e^{2 i \theta } }{ 1- r e^{i \theta } } = \frac{ 1 - r^2 e^{2 i \theta } }{ 1- r e^{i \theta } } \cdot \frac{ 1- r e^{-i \theta } }{1- r e^{-i \theta }} = \frac{r^{3} e^{i \theta}-r^{2} e^{2 i \theta}-r e^{-i \theta}+1}{r^{2}-2 r \cos (\theta)+1} ## and here I also stopped, unclear how to continue.

Can you please help? I don't know how to show the base case.

Edit: Problem's solved!
 
Last edited:
Physics news on Phys.org
Why don't you just factor the numerator?
 
  • Like
Likes   Reactions: CGandC
@CGandC: Complex numbers obey the usual rules of arithmetic. You don't need to split z into real and imaginary parts. It is easier to expand (1 - z)\sum_{n=0}^N z^n and show that this equals 1 - z^{N+1}.

vela said:
Why don't you just factor the numerator?

In my view that comes fairly close to assuming what the question asks you to prove.
 
  • Like
Likes   Reactions: CGandC
I factored and Indeed I got what I wanted:
##
\frac{1- z^2 }{1-z}
= \frac{ 1-(a+ib)^2 }{1-(a+ib) } = \frac{ 1-(a+ib)^2 }{1-a - ib) } \cdot \frac{1- a + ib}{ 1- a + ib } = \frac{ a^{3}+i a^{2} b-a^{2}+a b^{2}-2 i a b-a+i b^{3}+b^{2}+i b+1 }{a^{2}-2 a+b^{2}+1} =

\frac{(a+1)\left(a^{2}-2 a+b^{2}+1\right)+i b\left(a^{2}-2 a+b^{2}+1\right)} {a^{2}-2 a+b^{2}+1} = a+1 + ib = 1 + a + ib = 1 + z ##

But as @pasmith proposed, it would've been easier if I'd show from the start that ##
(1 - z)\sum_{n=0}^N z^n = 1 - z^{N+1}
##
I haven't thought about that though.

that's it!, thanks for the help!
 
CGandC said:
I factored and Indeed I got what I wanted:
##
\frac{1- z^2 }{1-z}
= \frac{ 1-(a+ib)^2 }{1-(a+ib) } = \frac{ 1-(a+ib)^2 }{1-a - ib) } \cdot \frac{1- a + ib}{ 1- a + ib } = \frac{ a^{3}+i a^{2} b-a^{2}+a b^{2}-2 i a b-a+i b^{3}+b^{2}+i b+1 }{a^{2}-2 a+b^{2}+1} =

\frac{(a+1)\left(a^{2}-2 a+b^{2}+1\right)+i b\left(a^{2}-2 a+b^{2}+1\right)} {a^{2}-2 a+b^{2}+1} = a+1 + ib = 1 + a + ib = 1 + z ##
##1 - z^2 = (1 + z)(1 - z)##
I don't see that as assuming what the problem is asking you to prove. What you did is essentially the same as what I have above, although very much more long-winded.
 
  • Like
Likes   Reactions: CGandC
You are correct, it was a very silly mistake of mine ignoring that.. probably because I've sat through lots of math exercises today non-stop and learning new topics.
 
pasmith said:
In my view that comes fairly close to assuming what the question asks you to prove.
I was referring to factoring ##1-z^2## to verify the base case, not the general case.
 

Similar threads

  • · Replies 22 ·
Replies
22
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K