MHB Proving Inequality for All $n \ge 1$

  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Inequality
tmt1
Messages
230
Reaction score
0
I have this inequality:

$$ \frac{n^3}{n^5 + 4n + 1} \le \frac{1}{n^2}$$

for all $n \ge 1$

I get that

$$ \frac{1}{n^5 + 4n + 1} \le \frac{1}{n^2}$$

but how do I guarantee that when $n^3$ is in the numerator, this inequality holds? Is this for any numerator greater than 1? Also, why must $n$ be greater than or equal to 1?
 
Mathematics news on Phys.org
Rearrange the left-hand side like so:

$\dfrac{n^2}{n^2}\cdot \dfrac{n^3}{n^5 + 4n + 1} = \dfrac{1}{n^2}\cdot\dfrac{n^5}{n^5 + 4n + 1} < \dfrac{1}{n^2}$

whenever $n^5 + 4n + 1 > n^5$, that is, when $4n + 1 > 0$, so $n > -\frac{1}{4}$.

If $n$ is an integer, this means $n$ must be non-negative. But we cannot allow $n = 0$, or else the RHS of the inequality is undefined. That leaves $n \geq 1$ (unless you want to make some awkward qualifications about when $n = 0$).

The inequality still holds for all non-zero reals $n$ greater than $-\frac{1}{4}$, but the use of the letter $n$ typically indicates a natural number.
 
Since n is positive, if if were true that $$\frac{n^3}{n^5+ 4n+ 1}\le \frac{1}{n^2}$$ then, multiplying by [math]n^2(n^5+ 4n+ 1)[/math] we would have [math]n^5\le n^5+ 4n+ 1[/math]. That is the same as [math]0\le 4n+ 1[/math] which, since n is positive, is true. To prove the original statement, work back. It is true that [math]0\le 4n+ 1[/math]. Add [math]n^5[/math] to both sides to get [math]n^5\le n^5+ 4n+ 1[/math]. Now divide both sides by [math]n^2(n^4+ 4n+ 1)[/math].
 
tmt said:
I have this inequality: $ \frac{n^3}{n^5 + 4n + 1} \le \frac{1}{n^2} $ for all $n \ge 1$
I get that.

$$ \frac{1}{n^5 + 4n + 1} \le \frac{1}{n^2}$$

but how do I guarantee that when $n^3$ is in the numerator, this inequality holds?
Is this for any numerator greater than 1?
Also, why must $n$ be greater than or equal to 1?
\begin{array}{cccc}\text{For } n &gt; 1, &amp; 4n + 1 \:\ge\:0 \\ \\<br /> \text{Add }n^5: &amp; n^5 + 4n+1 \:\ge\:n^5 \\ \\<br /> \text{Take reciprocals:} &amp; \dfrac{1}{n^5+4n+1} \:\le \:\dfrac{1}{n^5} \\ \\<br /> \text{Multiply by }n^3: &amp; \dfrac{n^3}{n^5+4n+1} \:\le \: \dfrac{n^3}{n^5} \\ \\<br /> \text{Therefore:} &amp; \dfrac{n^3}{n^5+4n+1} \:\le\: \dfrac{1}{n^2}<br /> \end{array}
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top