MHB Proving Inequality for Positive Real Numbers

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For positive real numbers $a,\,b,\,c$, prove the inequality:

$$a + b + c ≥ \frac{a(b + 1)}{a + 1} + \frac{b(c + 1)}{b + 1}+ \frac{c(a + 1)}{c + 1}$$
 
Mathematics news on Phys.org
Hint:

Use substitution skill and let $x=a+1,\,y=b+1,\,z=c+1$.
 
My solution:

Let $x,\,y$ and $z$ be positive real such that $x=a+1$, $y=b+1$ and $z=c+1$, we see that by applying the AM-GM inequality to the sum of $\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}$ yields $\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\ge 3$, so $-3\ge -\dfrac{x}{y}-\dfrac{y}{z}-\dfrac{z}{x}$. Next we add $(x+y+z)$ to both sides of the inequality, that gives $(x-1)+(y-1)+(z-1)≥ \left(x-\dfrac{x}{z}\right)+\left(y-\dfrac{y}{x}\right)+\left(z-\dfrac{z}{y}\right)=\dfrac{x(z-1)}{z}+\dfrac{y(x-1)}{x}+\dfrac{z(y-1)}{y}$, upon rearranging and back substituting we see that we've proved $$a + b + c ≥ \frac{a(b + 1)}{a + 1} + \frac{b(c + 1)}{b + 1}+ \frac{c(a + 1)}{c + 1}$$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top