MHB Proving isosceles using centroid and medians

  • Thread starter Thread starter slwarrior64
  • Start date Start date
  • Tags Tags
    Centroid
slwarrior64
Messages
22
Reaction score
0
I can definitely do this in the opposite direction, but
1604546092378.jpeg
 
Mathematics news on Phys.org
Letting $AB=c$, $AC=b$ and noting that the usual property of the centroid tells us that $GC = \frac{2}{3}$ of the median from $C$ and $GB = \frac{2}{3}$ of the median from $B$ we can use Stewart's Theorem to write everything in terms of the three sides $a,b,c$. It is an involved equation requiring two squarings to get rid of all radicals. I used Wolfram Alpha to double check my computations. After simplifying everything I end up with

$(b-c)^2 \left[ (b-c)^2-a^2 \right] =0$.

The bracket fails the triangle inequality which only leaves $b=c$ or $AB=AC$. I can't see any synthetic proof.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top