MHB Proving isosceles using centroid and medians

  • Thread starter Thread starter slwarrior64
  • Start date Start date
  • Tags Tags
    Centroid
Click For Summary
The discussion focuses on proving the isosceles triangle property using centroids and medians. By letting sides AB, AC, and BC be represented as c, b, and a respectively, the centroid properties are applied alongside Stewart's Theorem to derive an equation involving the triangle's sides. The resulting equation simplifies to $(b-c)^2 \left[ (b-c)^2-a^2 \right] =0$. The analysis reveals that the bracket fails the triangle inequality, leading to the conclusion that b must equal c, indicating that AB equals AC. The author expresses difficulty in finding a synthetic proof for this result.
slwarrior64
Messages
22
Reaction score
0
I can definitely do this in the opposite direction, but
1604546092378.jpeg
 
Mathematics news on Phys.org
Letting $AB=c$, $AC=b$ and noting that the usual property of the centroid tells us that $GC = \frac{2}{3}$ of the median from $C$ and $GB = \frac{2}{3}$ of the median from $B$ we can use Stewart's Theorem to write everything in terms of the three sides $a,b,c$. It is an involved equation requiring two squarings to get rid of all radicals. I used Wolfram Alpha to double check my computations. After simplifying everything I end up with

$(b-c)^2 \left[ (b-c)^2-a^2 \right] =0$.

The bracket fails the triangle inequality which only leaves $b=c$ or $AB=AC$. I can't see any synthetic proof.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
27
Views
4K
Replies
1
Views
19K