MHB Proving Linear Maps are One-to-One

  • Thread starter Thread starter baseball3030
  • Start date Start date
  • Tags Tags
    Linear
baseball3030
Messages
9
Reaction score
0
One to One

Prove that A linear map T: Rn->Rm is one to one:

Again, the only thing I can think of doing is possibly using rank nullity theorem but then again I think this can be proved by using independence assumption.
 
Last edited:
Physics news on Phys.org
Hint: find a basis of $\mathbb{R}^n$ (the columns of $I_n$ will do) and show that the image of this basis under $T$ cannot be linearly independent in $\mathbb{R}^m$. Use this to show that $\mathbf{0} \in \mathrm{R}^m$ has two preimages under $T$.​
 
From a previous topic, if $B$ is any basis for $\Bbb R^n$, then $T(B)$ is linearly independent if $T$ is 1-1.

Thus $\text{dim}(\text{im}(T)) = |T(B)| = n$.

Since any basis $C$ of $\Bbb R^m$ is a MAXIMAL linearly independent set, we have $n \leq m$, contradicting $m < n$.

Our only assumption was that $T$ was 1-1, so this cannot be the case.

(Bacterius' approach is good, too :))
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
4
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
6K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 23 ·
Replies
23
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K