MHB Proving $\log(2)$ with Alternating Series

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
It might be well-known for you that

$$\sum_{n\geq 1}\frac{(-1)^{n+1}}{n}=\log(2)$$​

There might be more than one way to prove it :)
 
Mathematics news on Phys.org
The typical approach is to expand $\log(1+z)$ in a Taylor series about $z=0$ and then apply Abel's theorem. But that's not particularly interesting.
 
$$ \eta(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{s}} = (1-2^{1-s}) \sum_{n=1}^{\infty} \frac{1}{n^{s}} = (1-2^{1-s}) \zeta(s) $$

Then

$$\lim_{s \to 1} \ \eta(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \lim_{s \to 1 } \ (1-2^{1-s}) \zeta(s) = \lim_{s \to 1} (1-2^{1-s}) \Big( \frac{1}{s-1} + \mathcal{O}(1) \Big)$$

$$= \lim_{s \to 1} \frac{1-2^{1-s}}{s-1} = \lim_{s \to 1} \frac{2^{1-s} \log 2}{1} = \log 2 $$
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top