MHB Proving Orthogonal Polynomials: A Weighted Integral

Click For Summary
The discussion centers on proving that an orthogonal set of polynomials \{φ_0, φ_1, ..., φ_n\} satisfies the condition ∫_a^b w(x)φ_n Q_k(x) dx = 0 for any polynomial Q_k of degree k<n, given a weight function w(x). Participants express concerns about the definition of orthogonality and the assumptions regarding the degrees of the polynomials involved. It is noted that if the polynomials are not correctly defined by their degrees, the proof may fail. The instructor later clarified the question, confirming that φ_k is indeed of degree k, allowing for a successful resolution of the problem. The importance of properly defining the weight function and polynomial degrees in orthogonality proofs is emphasized.
Amer
Messages
259
Reaction score
0
Let \{ \phi_0,\phi_1,...,\phi_n\} othogonal set of polynomials on [a,b] n>0, with a weight function w(x) prove that

\int_{a}^b w(x)\phi_n Q_k (x) \; dx = 0

for any polynomail Q_k(x) of degree k<n ?

My work :

I think there is a problem in the question since if we take x^2,x^3 on the interval [-1,1] they are orthogonal

but if we take x

\int_{-1}^{1} x(x^3 ) \; dx \neq 0
 
Last edited:
Physics news on Phys.org
you haven't defined your weight function w(x), but let's assume it is the constant function 1. clearly $1,x$ are orthogonal, so we can start with a basis:

$B = \{1,x,\dots \}$

now let's look at what our third basis element $ax^2 + bx + c$ might be:

being orthogonal to 1 requires that $\int_{-1}^1ax^2 + bx + c\ dx = 0$. evaluating the integral, we find that:

$\frac{a}{3} + c - (\frac{-a}{3} + (-c)) = \frac{2a}{3} + 2c = 0$, and simplifying we get: $c = \frac{-a}{3}$.

so our second degree polynomial is of the form: $ax^2 + bx - \frac{a}{3}$.

since we must also have our second-degree polynomial orthogonal to x, this means that:

$\int_{-1}^1 ax^3 + bx^2 - \frac{ax}{3}\ dx = 0$, and evaluating THAT interval leads to $b = 0$.

traditionally, these polynomials are "normalized" so that $\phi_k(1) = 1$, doing so for:

$\phi_2(x) = ax^2 - \frac{a}{3}$ leads to: $a = \frac{3}{2}$, so that we get: $\phi_2(x) = \frac{1}{2}(3x^2 - 1)$.

the point is, there is no reason to assume that the "standard" basis: $\{1,x,x^2,x^3,\dots \}$ will be orthogonal with respect to the inner product defined by:

$\langle f,g \rangle = \int_{-1}^1 f(x)g(x)\ dx$ or the "weighted inner product" $\langle f,g \rangle = \int_{-1}^1 w(x)f(x)g(x)\ dx$

if you continue the process i started above (or by using gram-schmidt), you will get:

$\phi_3(x) = \frac{1}{2}(5x^3 - 3x)$ which can be verified to be orthogonal to $\phi_0, \phi_1,\phi_2$.
 
thanks, I edited my post
can you check it again ?
 
Amer said:
Let \{ \phi_0,\phi_1,...,\phi_n\} othogonal set of polynomials on [a,b] n>0, with a weight function w(x) prove that

\int_{a}^b w(x)\phi_n Q_k (x) \; dx = 0

for any polynomail Q_k(x) of degree k<n ?

My work :

I think there is a problem in the question since if we take x^2,x^3 on the interval [-1,1] they are orthogonal

but if we take x

\int_{-1}^{1} x(x^3 ) \; dx \neq 0
Then why do you assert that they are orthogonal. In particular, what is your definition of "orthogonal"?
 
Amer said:
Let \{ \phi_0,\phi_1,...,\phi_n\} othogonal set of polynomials on [a,b] n>0, with a weight function w(x) prove that

\int_{a}^b w(x)\phi_n Q_k (x) \; dx = 0

for any polynomail Q_k(x) of degree k<n ?

My work :

I think there is a problem in the question since if we take x^2,x^3 on the interval [-1,1] they are orthogonal

but if we take x

\int_{-1}^{1} x(x^3 ) \; dx \neq 0

There is something missing from this, there seems to be an implicit assumption that \( \phi_k(x) \) is of degree \( k \) (or rather that \( \phi_n(x) \) is of degree \(n\) and every degree less than \(n\) is represented by one of the other \(\phi\)s ). If this is not the case then the result can fail.

CB
 
CaptainBlack said:
There is something missing from this, there seems to be an implicit assumption that \( \phi_k(x) \) is of degree \( k \) (or rather that \( \phi_n(x) \) is of degree \(n\) and every degree less than \(n\) is represented by one of the other \(\phi\)s ). If this is not the case then the result can fail.

CB

it is true, our instructor fixed the question as what you said (\phi_k is of order k )and i solved it
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
48
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K