MHB Proving Perpendicular Motion of Two Colliding Spheres

markosheehan
Messages
133
Reaction score
0
Two smooth spheres of masses km and m collide obliquely. the sphere of mass m is brought to rest by the impact. the coefficient of restitution for the collision is 1/k (k greater or equal to 1) Prove before the impact the spheres were moving perpendicular to each other.

i have worked out k=-1. I know the sphere of mass m was xi+0j before and 0i+0j after.
 
Mathematics news on Phys.org
i have worked out the first part
the second part of the question is show that as a result of the collision the kinetic energy lost by the sphere of mass m is k times the kinetic energy gained by the sphere of mass km.
the kinetic energy lost by mass m sphere is .5mx^2
kinetic energy gained by mass km sphere is .5(km)(y)^2-.5(km)(a)^2
Any help?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top