MHB Proving Positive Definite Scalar Product for $n \times n$ Matrices

rputra
Messages
35
Reaction score
0
Consider $X, Y$ as $n \times n$ matrices, I am given this definition of scalar product:
$$\langle X, Y \rangle = tr(X Y^T),$$
and I need to prove that it is positive definite scalar product. Of several properties I need to prove, two of them are
(1) $\langle X, X\rangle \geq 0$ and
(2) $\langle X, X\rangle > 0$ if $X \neq 0.$
I am lost on proving these two properties, any help or hints to prove them would be very much appreciated. Thank you before hand for your time and effort.
 
Physics news on Phys.org
Hi Tarrant,

A good place to start would be with the definition of the trace for an $n\times n$ matrix. Do you recall what this was?
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top