Proving Rank Relationship Between Matrices A and B

Click For Summary
SUMMARY

The discussion centers on proving the relationship between the ranks of two matrices A and B, specifically that for any m x s matrix A and any s x n matrix B, the inequality rank(A) + rank(B) - s ≤ rank(AB) holds true. Participants explore the implications of the rank-nullity theorem and establish that rank(AB) is less than or equal to both rank(A) and rank(B). They also clarify that nullity(AB) ≤ nullity(A) + nullity(B) is a valid statement, leading to a successful proof of the original claim.

PREREQUISITES
  • Understanding of matrix rank and its properties
  • Familiarity with the rank-nullity theorem
  • Knowledge of nullity and its relationship to matrix operations
  • Basic linear algebra concepts, including matrix multiplication
NEXT STEPS
  • Study the rank-nullity theorem in detail
  • Learn about the implications of matrix rank in linear transformations
  • Explore proofs related to matrix rank inequalities
  • Investigate applications of rank in solving linear systems
USEFUL FOR

Students of linear algebra, mathematicians focusing on matrix theory, and educators teaching concepts of matrix rank and nullity.

D.K.
Messages
12
Reaction score
0

Homework Statement



Prove that for any m x s matrix A and any s x n matrix B it holds that:

rank(A) + rank(B) - s
is less or equal to:
rank(AB)


The Attempt at a Solution



Obviously, the following are true:

- rank(A) is less or equal to s,
- rank(B) is less or equal to s,
- rank(AB) is less or equal to both rank(A) and rank(B).

So it is possible to prove:

rank(A) + rank(B) - 2s is less or equal to rank(AB).

Really don't know what can be done next. Thanks for any help on this.
 
Physics news on Phys.org
These should be easy to prove:
Rank(A) <= min(m,s,)
Rank(B) <= min(s,n)
Rank(AB) <= min (m,n)

and put you in the right direction

edit: If you have to prove these cause you haven’t proven it in class, just prove the general form of:
Rank(A) <= min (m,n) where A is a m x n matrix.
 
Last edited:
JonF said:
These should be easy to prove:
Rank(A) <= min(m,s,)
Rank(B) <= min(s,n)
Rank(AB) <= min (m,n)

and put you in the right direction

I'm afraid that doesn't suffice.

For suppose that m <= n < = s, e.g. m = 4, n = 4, s = 5. Then:

rank(A) <= 4,
rank(B) <= 4,
rank(AB) <= 4.

That, however, doesn't make rule out as impossible following:

rank(A) = 4,
rank(B) = 4,
rank(AB) = 2,

which would make the statement:

rank(A) + rank(B) - s <= rank(AB)

entirely false.
 
sorry I'm half asleep, after thinking about it a bit more i'd use the rank-nullity theorem
 
JonF said:
sorry I'm half asleep, after thinking about it a bit more i'd use the rank-nullity theorem

Well, I see a way to use the rank-nullity theorem here successfully provided it is known that:

for any A, B, AB it is the case that: nullity A + nullity B <= nullity AB.

But is the above true?
 
you have it backwards:

nullity(AB) <= nullity(A) + nullity(B)

Can you think of why?
 
JonF said:
you have it backwards:

nullity(AB) <= nullity(A) + nullity(B)

Can you think of why?


Sorry, I've meant to write it the way you did. I'm aware that it'll do the trick but don't know why is it true.
 
sorry it took me so long to respond, I'm at work and didn’t have a chance to get back to you.

Do you know Rank(AB) <= min(Rank(A),Rank(B))? If so:
Since Null(A) >= 0, Rank(AB) >=0, if we use the rank-nullity theorem a few times we get:

Null(A) + Null(B) =
Null(A) + n – Rank(B) =
Null(A) + Rank (AB) + Null(AB) – Rank(B) >=
Rank (AB) + Null(AB) – Rank(B) >=
Rank(B) – Rank(B) + Null(AB) =
Null(AB)
 
JonF said:
sorry it took me so long to respond, I'm at work and didn’t have a chance to get back to you.

Do you know Rank(AB) <= min(Rank(A),Rank(B))? If so:
Since Null(A) >= 0, Rank(AB) >=0, if we use the rank-nullity theorem a few times we get:

Null(A) + Null(B) =
Null(A) + n – Rank(B) =
Null(A) + Rank (AB) + Null(AB) – Rank(B) >=
Rank (AB) + Null(AB) – Rank(B) >=
Rank(B) – Rank(B) + Null(AB) =
Null(AB)

Would you be so kind as to explain how did you get

Rank (AB) + Null(AB) – Rank(B) >= Rank(B) – Rank(B) + Null(AB)?

The rest - including Rank(AB) <= min(Rank(A),Rank(B)) - is perfectly clear to me.
 
  • #10
With an inequality error, sigh I’m doing poorly with this problem and algebraic manipulation tonight.

I know: nullity(AB) <= nullity(A) + nullity(B) is true. I can't for the life of me remember why.
 
  • #11
For sure the inequality holds:

max(null(A), null(B)) <= null(AB).

Oh, and null(A) + null(B) >= null(AB) turns out to be simply equivalent to the statement we were trying to prove from the beginning.
 
  • #12
I found it easy to prove:

null(A) + null(B) >= null(AB),

using maps instead of matrices. Indeed, take /phi_A, /phi_B and /phi_AB defined by matrices A, B and AB respectively.

If we restrict the domain of /phi_AB to just those vectors X of which images \phi_B(X) lies in the Ker(A), it's not hard to apply rank-null theorem in it's full generality once again and get:

null(AB) = rank C + null(B), where C \in null(A).

That concludes the proof.
 
Last edited:

Similar threads

Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
19K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K