Proving Rationality of Squares of 9th Day 2 ARO 2004/2005 Numbers

  • Context: MHB 
  • Thread starter Thread starter Smb
  • Start date Start date
  • Tags Tags
    Number theory Theory
Click For Summary
SUMMARY

The discussion centers on proving that the squares of ten mutually distinct non-zero real numbers are rational, given that for any two numbers, either their sum or product is rational. Participants analyze specific cases involving numbers \(a\), \(b\), and \(c\), and explore the implications of rational sums and products. The conclusion drawn is that if certain conditions are met, contradictions arise, leading to the assertion that the squares of these numbers must be rational.

PREREQUISITES
  • Understanding of rational and irrational numbers
  • Familiarity with algebraic manipulation and properties of real numbers
  • Knowledge of mathematical proof techniques, particularly contradiction
  • Basic experience with Olympiad-level problem-solving strategies
NEXT STEPS
  • Study the properties of rational and irrational numbers in depth
  • Learn about proof by contradiction and its applications in mathematics
  • Explore advanced algebraic techniques for manipulating sums and products
  • Investigate similar problems from mathematical Olympiads for practice
USEFUL FOR

Mathematics students, educators, and enthusiasts interested in number theory and proof strategies, particularly those preparing for competitive mathematics events.

Smb
Messages
3
Reaction score
0
Ten mutually distinct non-zero reals are given such that for any two, either their sum or their product is rational. Prove that squares of all these numbers are rational.
I tried using 3 of those numbers - a, b and c. And I checked each of the possible situations but I'm not sure if my maths teacher is going to accept it.
The problem is from the All-Russian Olympiad 2004/2005 9th Day 2.
 
Last edited:
Physics news on Phys.org
Is this a homework assignment? If so, I recommend you post as much working as possible.
 
Joppy said:
Is this a homework assignment? If so, I recommend you post as much working as possible.

I worked out the answer easily but the method is slow.
I'll write for the first one because I don't have much time now:
a+b(-Q
b+c(-Q
a+c(-Q
ab+bc+ac+b^2(-Q
ab+bc+ac+c^2(-Q
(b-c)(b+c)(-Q
b-c(- Q Analogically we can do for each pair of numbers.
b^2-2bc+c^2-B^2-2bc-c^2(-Q
=> bc (- Q Analogically we can do for each pair of numbers. =>
b^2(- Q Analogically we can do for each pair of numbers.
 
Smb said:
I worked out the answer easily but the method is slow.
I'll write for the first one because I don't have much time now:
a+b(-Q
b+c(-Q
a+c(-Q
ab+bc+ac+b^2(-Q
ab+bc+ac+c^2(-Q
(b-c)(b+c)(-Q
b-c(- Q Analogically we can do for each pair of numbers.
b^2-2bc+c^2-B^2-2bc-c^2(-Q
=> bc (- Q Analogically we can do for each pair of numbers. =>
b^2(- Q Analogically we can do for each pair of numbers.

Hi Smb! Welcome to MHB! (Smile)Whatever way I can think of, it seems to be a number of cases, although I think we can do with fewer than you are suggesting.
Still, if we could cover all 8 similar cases we would be done, although I don't think we can.For starters, what you have now cannot occur, since if we start with $\def\inQ{\in\mathbb Q}
a+b, a+c \inQ$, then it follows that $(a+b)-(a+c) = (b-c) \inQ$.
Now suppose $b+c\inQ$, then $\frac 12((b+c)+(b-c))=b\inQ$ and similarly $c \inQ$, so that $bc\inQ$, which contradicts the either-or.
Therefore $b+c\not\inQ$.Let's start with assuming that we can find a triplet $(a,b,c)$ with $ab,ac\inQ$.
Then $\frac {ab}{ac}=\frac bc \inQ$, isn't it?
Now suppose $b+c\inQ$, then $\frac bc\cdot c + c = (\frac bc + 1)c \inQ$.
Can we figure out from there if any of $b$, $c$, and in particular $bc$ is rational? (Wondering)
And if so, can we find that $a^2\inQ$?
 
I like Serena said:
Hi Smb! Welcome to MHB! (Smile)Whatever way I can think of, it seems to be a number of cases, although I think we can do with fewer than you are suggesting.
Still, if we could cover all 8 similar cases we would be done, although I don't think we can.For starters, what you have now cannot occur, since if we start with $\def\inQ{\in\mathbb Q}
a+b, a+c \inQ$, then it follows that $(a+b)-(a+c) = (b-c) \inQ$.
Now suppose $b+c\inQ$, then $\frac 12((b+c)+(b-c))=b\inQ$ and similarly $c \inQ$, so that $bc\inQ$, which contradicts the either-or.
Therefore $b+c\not\inQ$.Let's start with assuming that we can find a triplet $(a,b,c)$ with $ab,ac\inQ$.
Then $\frac {ab}{ac}=\frac bc \inQ$, isn't it?
Now suppose $b+c\inQ$, then $\frac bc\cdot c + c = (\frac bc + 1)c \inQ$.
Can we figure out from there if any of $b$, $c$, and in particular $bc$ is rational? (Wondering)
And if so, can we find that $a^2\inQ$?
I forgot to rewrite it! I'm sorry for the misunderstanding it can be and/or.Both b +c(-Q and bc(-Q could be a case..
 
Smb said:
I forgot to rewrite it! I'm sorry for the misunderstanding it can be and/or.Both b +c(-Q and bc(-Q could be a case..

Fair enough. The proof doesn't really change though. Just a couple more cases to consider.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
7K
  • · Replies 14 ·
Replies
14
Views
7K
  • · Replies 19 ·
Replies
19
Views
16K
Replies
3
Views
2K
Replies
15
Views
38K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
Replies
1
Views
4K