Proving Self-Adjoint ODE for Legendre Polynomials

Click For Summary

Discussion Overview

The discussion revolves around proving that the first derivatives of Legendre polynomials satisfy a self-adjoint ordinary differential equation (ODE) with a specific eigenvalue. Participants explore the properties of Legendre polynomials, their derivatives, and the associated ODEs, with a focus on Sturm-Liouville theory and the conditions for self-adjointness.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants express confusion about the task, questioning whether they need to differentiate Legendre polynomials and how many to differentiate to show they satisfy a self-adjoint ODE.
  • One participant proposes an ODE derived from the first three Legendre polynomials and seeks clarification on how to determine if it is self-adjoint.
  • Another participant suggests that the operator defined by the differentiation of a function multiplied by $(1-x^2)$ is Hermitian and that Legendre polynomials are eigenfunctions of this operator.
  • There is a discussion about the form of the Sturm-Liouville problem and the associated eigenvalues, with some participants unsure about the implications of their findings.
  • Participants mention the need for an integrating factor to transform a non-self-adjoint ODE into a self-adjoint form.

Areas of Agreement / Disagreement

Participants generally express uncertainty about the steps needed to prove the self-adjointness of the ODE and the role of the Legendre polynomials. Multiple competing views on how to approach the problem remain, and the discussion is unresolved.

Contextual Notes

Some participants note limitations in their understanding of Sturm-Liouville theory and the specific conditions under which the Legendre polynomials satisfy the self-adjoint ODE. There are unresolved questions about the definitions and assumptions related to the operator being discussed.

ognik
Messages
626
Reaction score
2
(I haven't encountered these before, also not in the book prior to this problem or in the near future ...)

Show that the 1st derivatives of the legendre polynomials satisfy a self-adjoint ODE with eigenvalue $\lambda = n(n+1)-2 $

Wiki shows a table of poly's , I don't think this is what the book means ...

Wiki also shows Rodrique's formula which looks more relevant - $ P_n(x) =\frac{1}{2^n}\frac{1}{2!} \d{^n{}}{{x}^n} (x^2-1)^n$
So I differentiated that a couple of times to see, and got $ P_0 =1, P_1 = x, P_2 = \frac{1}{2}(3x^2 - 1) ...$ - and realized I was just generating the polynomials. Basically I don't what I'm supposed to be doing?
 
Physics news on Phys.org
Got a bit further along, I just couldn't find what one should do with the polys, so I tried to make an ODE out of the 1st 3 and that looks like a good guess (how should I have known?), I get :

$ y''+xy'+\frac{1}{2}(3x^2-1)y=0 ,[ p_0 =1, p_1 = x, p_2 =\frac{1}{2}(3x^2-1)] $ which I can (I hope) use sturm-L theory to to solve. Problem is book is not very clear on S-L theory and couldn't find anything very clear on the web, so please help me get the method right.

I believe I want to get an eigenvalue eqtn of the form: $ \mathcal{L}y=\lambda w(x)y $. First Check if self-adjoint, ie is $p_0' =p_1 $

A) If the eqtn was already self-adjoint, then $p=p_0, q=p_2$ and $ \mathcal{L} = (p\frac{d}{dx})' + q $ ...But where does w(x) normally come from? If I read it off for the original eqtn it = 1. I can't see how it would ever not be 1?

B) if not S-A, multiply the ODE by the integrating factor $= \mu(x)= \frac{1}{p_0} exp\int\frac{p_1}{p_0} dx$. Now $a_0=\mu, a_1=\mu p_1 , a_2=\mu p_2 $ giving a self adjoint ODE= $ a_0 y'' + a_1 y'+ a_2 y=0 $ and I follow A) above.
--------------------
Hoping the above is OK, I get $ \mu = e^{\frac{x^2}{2}}, \mathcal{L}y=\lambda y, where \: \mathcal{L}y = (py')'+qy, p=e^{\frac{x^2}{2}}, q=\frac{x}{2} e^{\frac{x^2}{2}} (3x^2-1)$
A hint please on what to do next?
 
I have honestly spent hours trying to make a decent start to this - not getting anywhere. I am not even sure what I'm supposed to doing - assume I'm stupid if necessary just to help get me started. Alternatively if the usual suspects are also stumped, knowing that would be a great comfort, leave a comment!

'Progress' since last post.

Wiki says that legendre polynomials are solutions to the Legendre ODE. I tried $y=p_0=1$ and it was a solution to $(1-x^2)y''-2xy'+n(n-1)=0 $ for n= 0 or 1.
$y=p_1=x$ gave me $2x=n^2+n$ which doesn't seem like a solution?

Tell me if I am mistaken, they want me to differentiate Legendre polynomials and to show they too are solutions of a self-adjoint ODE? If differentiating a poly gave a previous poly, that would answer the question, but they aren't related like that...

1) So - how many of them to differentiate? With a 2nd order ODE I would guess 2, but this doesn't limit it to 2nd order
2) If it was 2 poly's, $p'_0 = 0, p'_1 = 1$ which doesn't seem useful, should I instead start with $p_2= \frac{1}{2}\left(3{x}^{2}-1\right) $?
2) They say 'satisfy a self-adjoint ODE' - which one? I assume Legendres?
 
I don't know what space you are working on, but let us suppose it is $\mathcal{C}^{\infty}[-1,1]$

Consider the operator:

$H = D\circ(1-x^2)D$

where $D$ is the differentiation operator: $\dfrac{d}{dx}$ (so $D(f) = f'$), and $(1-x^2)D$ refers to "pointwise multiplication" by $(1-x^2)$, so for example, if $f(x) = \cos(x)$, then:

$H(f)(x) = \dfrac{d}{dx}((1-x^2)(-\sin(x)) = (x^2 - 1)\cos(x) + 2x\sin(x)$

Your task is, I believe, to show this operator is Hermitian, and to show $P_n$ is an eigenfunction of this operator, and then to calculate its eigenvalues.

To show $H$ is Hermitian, I believe the inner product you will employ is:

$\langle f,g\rangle = \int\limits_{-1}^1 f(x)g(x)\ dx$ (we can use the Riemann integral since our functions are smooth). This reduces to being "symmetric" (careful, here! some authors do not make this kind of distinction) since we have REAL-VALUED functions. In other words, no need to worry about complex-conjugations.

If I recall correctly (and I may not, it's literally been decades) this is a S-L problem of the form:

$\dfrac{d}{dx}\left[p(x)\dfrac{dy}{dx}\right] + q(x)y = -\lambda w(x)y$

with $p(x) = 1 - x^2, q(x) = 0$ and $w(x) = 1$.

The ODE associated with these polynomials is called Legendre's differential equation, and *that* "diffy q" shows the eigenvalues directly.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
48
Views
5K
  • · Replies 1 ·
Replies
1
Views
941
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
Replies
1
Views
2K