Proving Strictly Increasing Derivative with Continuous Function at a Point

Click For Summary

Homework Help Overview

The discussion revolves around proving that a differentiable function with a positive derivative at a point is strictly increasing in a neighborhood of that point, given that the derivative is continuous. The subject area is calculus, specifically focusing on the properties of derivatives and their implications for function behavior.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the definitions of strictly increasing and continuity, with one seeking a connection between these definitions and the behavior of the derivative. Another participant suggests using specific values for epsilon to demonstrate that the derivative remains positive in a neighborhood around the point of interest.

Discussion Status

The discussion is active, with participants offering insights and questioning the implications of their choices for epsilon. There is an exploration of how to effectively show that the derivative remains positive, but no consensus has been reached on the best approach yet.

Contextual Notes

Participants are navigating through the definitions and properties of continuity and differentiability, with some uncertainty about the implications of their choices for epsilon and how these relate to the derivative's behavior.

H2Pendragon
Messages
17
Reaction score
0

Homework Statement


Suppose f is differentiable on J, c is in J0 and f'(c) > 0. Show that if f' is continuous at c, then f is strictly increasing on some neighborhood of c


Homework Equations


Strictly increasing: If x < y then f(x) < f(y)
Continuous: For all epsilon > 0 there exists a delta > 0 such that x in D union B(a;delta) implies that |f(x) - f(a)| < epsilon

The Attempt at a Solution


I don't have any attempts to write down here. I'm mainly looking for a push in the right direction. I've been staring at the definitions and just can't see the easiest way to link them.
 
Physics news on Phys.org
H2Pendragon said:

Homework Statement


Suppose f is differentiable on J, c is in J0 and f'(c) > 0. Show that if f' is continuous at c, then f is strictly increasing on some neighborhood of c


Homework Equations


Strictly increasing: If x < y then f(x) < f(y)
Continuous: For all epsilon > 0 there exists a delta > 0 such that x in D union B(a;delta) implies that |f(x) - f(a)| < epsilon
Yes, and now take a= c and epsilon= f(c)/2 to show that f'(x)> 0 in (c-epsilon, c+epsilon).

The Attempt at a Solution


I don't have any attempts to write down here. I'm mainly looking for a push in the right direction. I've been staring at the definitions and just can't see the easiest way to link them.
 
HallsofIvy said:
Yes, and now take a= c and epsilon= f(c)/2 to show that f'(x)> 0 in (c-epsilon, c+epsilon).

Thanks for the reply. How does taking epsilon = f(c)/2 get me that f'(x) > 0?

I plugged it in and I end up getting that f'(c) - f(c)/2 < f(x) < f'(c) + f(c)/2

I understand, though, that finding f'(x) > 0 solves it. I'm just curious about this middle step. I assume I have to show that f'(c) = f(c)/2 ??
 
Did you mean to let epsilon = f'(c)/2?

Because that would solve it.

It would then be that f'(c) - f'(c)/2 < f'(x) => f(c)/2 < f'(x). Which means that f'(x) is strictly greater than 0. Thus f(x) is strictly increasing.

Is this right?
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 26 ·
Replies
26
Views
3K
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K