MHB Proving that a module can be decomposed as a direct sum of submodules

kalish1
Messages
79
Reaction score
0
Letting $X$ be a ring and $K$ be an $X$-module, I need to show that **if** $K \cong A \times B$ for some $X$-modules $A,B$, **then** $\exists$ submodules $M'$ and $N'$ of $K$ such that:

$K=M' \oplus N'$

$M' \cong A$

$N' \cong B.$----------I understand the concepts of internal and external direct sum of modules, and I showed that if $K = M \oplus N$ for $M,N$ submodules of $K$, then $K \cong M \times N.$ (I showed the isomorphism by defining a well-defined map, and then showing that the map is a surjective homomorphism, followed by the kernel being $\{0\}$ and applying the First Isomorphism Theorem.)

But I have tried doing this problem for hours now, and have not been able to crack it. How should I begin?

This question has been crossposted here: abstract algebra - Proving that a module can be decomposed as a direct sum of submodules - Mathematics Stack Exchange
 
Physics news on Phys.org
Hi kalish,

Let $\phi$ be is isomorphism from $A\times B$ onto $K$. Set $M' = \phi(A \times 0)$ and $N' = \phi(0 \times B)$. Since $M'$ and $N'$ are homomorphic images of submodules of $A\times B$, $M'$ and $N'$ are submodules of $K$. Given $x\in K$, there exists a unique element $(a,b) \in A\times B$ such that $x = \phi(a,b)$. Since $(a,b) = (a,0) + (0,b)$ and $\phi$ is a homomorphism, $\phi(a,b) = \phi(a,0) + \phi(0,b) \in M' + N'$. The representation of $x$ as $\phi(a,0) + \phi(0,b)$ is unique by uniqueness of $(a,b)$. Thus $x \in M' \oplus N'$. Since $x$ was an arbitrary point of $K$, $K \subseteq M' \oplus N'$ and thus $K = M' \oplus N'$.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top