MHB Proving that a module can be decomposed as a direct sum of submodules

kalish1
Messages
79
Reaction score
0
Letting $X$ be a ring and $K$ be an $X$-module, I need to show that **if** $K \cong A \times B$ for some $X$-modules $A,B$, **then** $\exists$ submodules $M'$ and $N'$ of $K$ such that:

$K=M' \oplus N'$

$M' \cong A$

$N' \cong B.$----------I understand the concepts of internal and external direct sum of modules, and I showed that if $K = M \oplus N$ for $M,N$ submodules of $K$, then $K \cong M \times N.$ (I showed the isomorphism by defining a well-defined map, and then showing that the map is a surjective homomorphism, followed by the kernel being $\{0\}$ and applying the First Isomorphism Theorem.)

But I have tried doing this problem for hours now, and have not been able to crack it. How should I begin?

This question has been crossposted here: abstract algebra - Proving that a module can be decomposed as a direct sum of submodules - Mathematics Stack Exchange
 
Physics news on Phys.org
Hi kalish,

Let $\phi$ be is isomorphism from $A\times B$ onto $K$. Set $M' = \phi(A \times 0)$ and $N' = \phi(0 \times B)$. Since $M'$ and $N'$ are homomorphic images of submodules of $A\times B$, $M'$ and $N'$ are submodules of $K$. Given $x\in K$, there exists a unique element $(a,b) \in A\times B$ such that $x = \phi(a,b)$. Since $(a,b) = (a,0) + (0,b)$ and $\phi$ is a homomorphism, $\phi(a,b) = \phi(a,0) + \phi(0,b) \in M' + N'$. The representation of $x$ as $\phi(a,0) + \phi(0,b)$ is unique by uniqueness of $(a,b)$. Thus $x \in M' \oplus N'$. Since $x$ was an arbitrary point of $K$, $K \subseteq M' \oplus N'$ and thus $K = M' \oplus N'$.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top